
GENERELIZED FUNCTIONS LECTURES

1. Leture 1-The spae of generalized funtions on Rn and

operations on them

1.1. Motivation. One of the basi examples for a generalized funtion is the

"Dira Delta funtion". While it is not a funtion, δt an be desribed by δt(x) :=


∞ x = t

0 x 6= t
, and by satisfying the equality

∞́

−∞

δt(x)dx = 1. Notie that
∞́

−∞

δt(x)f(x)dx =

f(t)
∞́

−∞

δt(x)dx = f(t). Here are several possible motivations to de�ne generalized

funtions:

• Every real funtion f : R → R an be established as a (ill-de�ned) sum of

ℵ indiator funtions f ≡
∑
t∈R

ft, where ft(x) :=




1 x = t

0 x 6= t
.

• Sometimes the solution for a di�erential equation (or even just the deriva-

tive of a funtion) is not a funtion, but only a generalized funtion. Using

generalized funtions, we an formulate solutions in suh ases.

• In physis, Dira Delta funtion an desribe the density of a point mass.

1.2. Basi de�nitions. We denote by C∞c (R) the spae of smooth real funtions

with ompat support.

De�nition. A generalized funtion is a ontinuous linear funtional ξ : C∞c (R)→

R. We sometimes use the notation 〈ξ, φ〉 instead of ξ(φ).

To de�ne what does �ontinuous� means we need to de�ne a topology on C∞c (R).

This is equivalent to de�ne what is a onvergent sequene in C∞c (R) (why? there

is something that need to be said here about uniform topology), and then ξ is

ontinuous i� the image of a onvergent sequene onverges to the image of its

limit.

De�nition. Given f ∈ C∞c (R) and a sequene {fn}n∈N with fn ∈ C
∞
c (R) for all

n, we say that {fn} onverges in C
∞
c (R) to f if:

1) There exists a ompat K ⊂ R for whih Supp(f) ∪
⋃
n∈N

Supp(fn) ⊆ K.

1
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2) For every order k = 0, 1, 2..., the derivatives {f
(k)
n } onverge uniformly to the

derivative f (k)
.

Reall a funtion f is locally − L1
, denoted f ∈ L1

LOC , if the restrition to any

ompat subset in its domain is an L1
funtion. Given a real funtion f ∈ L1

LOC

we'll de�ne ξf : C∞c (R) → R to be the generalized funtion ξf (φ) :=
∞́

−∞

f(x) ·

φ(x)dx (notie the integral onverges as it vanishes outside K, and f |K , φ|K ∈ L
1
).

These are sometimes alled regular generalized funtions.

Exerise. For any f ∈ L1
LOC , ξf is a well de�ned distribution.

The spae of generalized real funtions is denoted C−∞(R) := C∞c (R))∗. Also, we

have that C(R) ⊂ L1
LOC ⊂ C−∞(R), where the seond inlusion is derived from

the embedding f 7→ ξf .

Exerise. Prove that there exists a funtion f ∈ C∞c (R) whih isn't the zero

funtion. Hint: Use funtion suh as e−1/(1−x)
2

as your building blok.

De�nition. We say the sequene {fn}n∈N onverges weakly to f if for every F ∈

C∞c (R) we have: lim
n−→∞

∞́

−∞

F (x) · fn(x)dx =
∞́

−∞

F (x) · f(x)dx . Now we want to

take a ompletion with respet to this weak onvergene, and for this we need the

notion of Cauhy sequene: A sequene {fn} is alled a weakly Cauhy sequene if

∀g ∈ C∞c (R), ǫ > 0 ∃N suh that ∀m,n > N

∞̂

−∞

(fn(x)− fm(x)) g(x)dx < ǫ.

Exerise. There is a natural isomorphism C∞c (R)
w
≃ (C∞c (R))

∗
as vetor spaes.

De�nition. A sequene φn ∈ Cc(R) of ontinuous, ompatly supported funtions

is said to be an approximation to the identity if the φn are non-negative, have total

mass

∞́

−∞

φn(x) · dx = 1 and for any �xed r, φn is supported on [−r, r] for n

su�iently large. One an generate suh a sequene by starting with a single non-

negative ontinuous ompatly supported funtion φ1 of total mass 1, and then

setting φn(x) = nφ1(nx). Many other onstrutions are possible also.

Notie that given η ∈ C−∞(R) of the form η = ξf , we an �reover� f ompletely

by applying 〈ξf , φn(x+ t)〉, and take the limit to get f(t).
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1.3. Derivatives of generalized funtions. Let f ∈ C∞c (R). We de�ned ξf (φ) :=
∞́

−∞

f(x) · φ(x)dx, and thus ξf ′(φ) =
∞́

−∞

f ′(x) · φ(x)dx. Using integration by parts

we'll get ξf ′(φ) = f(x) · φ(x)|∞−∞ −
∞́

−∞

f(x) · φ′(x)dx. However, sine φ and f

has ompat support, we know that f(x) · φ(x)|∞−∞ = 0. Thus, we'll de�ne

ξ′(φ) := −ξ(φ′).

For example, the derivative of δ0 an be (badly) desribed as

δ′0(x) :=





∞ x→ 0−

−∞ x→ 0+

0 otherwise

.

This is a bad desription, sine we an't evaluate generalized funtions at spei�

points (also it's hard to desribe δ′′0 , δ
′′′
0 this way). When δ′0(x) is applied to some

φ ∈ C∞c (R), aording to our de�nition we'll get δ′0(φ) = −δ0(φ
′) = −φ′(0).

Exerise. Find a funtion F ∈ L1
LOC for whih F ′ = δ. Hint: F (x) :=




0 x < 0

1 x ≥ 0
.

1.4. The support of generalized funtions. We annot evaluate a generalized

funtion at a point. Therefore, we annot just de�ne its support by Supp(ξ) :=

{x ∈ R | ξ(x) 6= 0}. However, if for some neighborhood U ⊂ R we have ∀f ∈

C∞c (U), ξ(f) = 0, then evidently supp(ξ) ⊆ U c. In this ase we'll denote ξ|U ≡ 0.

Notation: C∞c (U) is the spae of smooth funtions f : U → R supported in some

ompat subset of U . Given a ompat subset K of some spae X , we denote

C∞K (X) the spae of smooth funtions f : X → R with supp(f) ⊆ K. In partiular

C∞K (X) ⊆ C∞c (X) for every K ⊆ X .

As another example for a generalized funtion's support: it's reasonable to expet

Supp(δt) = {t}. So, we'd like to de�ne Supp(ξ) to be the omplement of the union

over all neighborhoods U ⊂ R suh that ∀f ∈ C∞c (U), ξ(f) = 0. This de�nition is

well de�ned only if we solve the following exerise:

Exerise. Let U1, U2 be open subsets of R. Show that:

1) if ξ|U1
≡ ξ|U2

≡ 0 then ξ|U1∪U2
≡ 0. Hint: Use partition of unity.

2) Show this also holds for any union of suh ompat {Ui}i∈I .
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Note that the support of δ′0 is just {0} and yet, given some f ∈ C(R) for whih

f(0) = 0, f ′(0) 6= 0, we'll have δ′0(f) = −δ0(f
′) = −f ′(0) 6= 0. In other words,

having f(0) = 0 isn't enough to get δ′0 to vanish on f . We need f to vanish with

all its derivatives.

Exerise. 1) The support of δ(n) is {0} for any n.

2) Find all the generalized funtions ξ ∈ C−∞c (R) for whih Supp(ξ) = {0}. Hint:

All the funtions δ
(n)
0 for n ∈ N and their (�nite) linear ombinations.

3) Supp(aξ1 + bξ2) ⊆ Supp(ξ1) ∪ Supp(ξ2).

4) Supp(ξ)− Supp(ξ)◦ ⊆ Supp(ξ′) ⊆ Supp(ξ).

1.5. Produts and onvolutions of generalized funtions.

De�nition. Let f ∈ C∞c (R), ξ ∈ C−∞c (R). We'd like to have (f · ξ)(φ) =
∞́

−∞

ξ(x) ·

f(x) · φ(x)dx. Thus, we'll de�ne (f · ξ)(φ) := ξ(f · φ).

Atually, even though we an multiply every suh f and ξ, the produt of two gen-

eralized funtions will not always be de�ned. Notie that indeed in some topologies

the produt of two Cauhy sequenes isn't always a Cauhy sequene.

Reall that given two funtions f, g, their onvolution is the funtion (f ∗ g)(x) :=
∞́

−∞

f(t)·g(x−t)dt. The onvolution of two smooth funtions will always be smooth.

In addition, if f, g have ompat support, than so will f ∗ g .

Exerise. Supp(f ∗ g) is the Minkowski sum of Suppf and Suppg. Therefore

f, g ∈ C∞c (R) implies f ∗ g ∈ C∞c (R).

Given f, g ∈ C∞c (R) we an write (f ∗ g)(x) = ξf (g̃x), where g̃x(t) := g(x− t). This

gives the motivation to de�ne the onvolution ξ ∗ g to be the funtion (ξ ∗ g)(x) =

ξ(g̃x) (notie: the onvolution between a funtion and a generalized funtion is a

funtion- not a generalized funtion).

Exerise. Show that for φ ∈ C∞c (R) we get that ξ ∗ φ is a smooth funtion.

Next is the de�nition for onvolution of two generalized funtions. We won't de�ne

it for every ouple of generalized funtions -only for those with ompat support,
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or more preisely, when at least one of the generalized funtions have ompat

support. For ξf , ξg ∈ C
−∞
c (R) we'd like to have:

(ξf ∗ ξg)(φ) =

∞̂

x=−∞

(f ∗ g)(x) · φ(x)dx =

∞̂

x=−∞

∞̂

t=−∞

f(t) · g(x− t) · φ(x)dtdx

Rearranging the expression and replaing the order of integration gives:

(ξf ∗ ξg)(φ) =

∞̂

t=−∞

f(t)

∞̂

x=−∞

g(x− t) · φ(x)dxdt

In a "usual" onvolution, the arguments of the multiplied funtions in the integral

sum up to the onvolution's argument (e.g., (f ∗ g)(x) :=
∞́

−∞

f(t) · g(x− t)dt, and

x = t+ (x− t)). In our ase, we denote φ̄(x) := φ(−x), and write:

∞̂

t=−∞

f(t)

∞̂

x=−∞

g(x− t) · φ̄(−x)dxdt =

∞̂

t=−∞

f(t) · (ξg ∗ φ̄)(−t)dt = ξf (ξg ∗ φ̄)

De�nition. We de�ne(ξf ∗ ξg)(φ) := ξf ((ξg ∗ φ̄)).

However, some formal justi�ation is required. Given a ompat K ⊂ R, we'll say

ρ is a uto� funtion of K if ρ|K ≡ 1, ρ|V ≡ 0, when V ⊂ R\K.

Exerise. Let K,V as above. Show that there always exists a smooth uto�

funtion. Hint: use Urison's Lemma.

Thus, given some ξ ∈ C−∞c (R) with Supp(ξ) ⊂ K we will have ξ(φ) = ξ(ρK · φ).

This enables us to de�ne ξ as a funtional over all C∞(R) and not only on C∞c (R)).

For every φ ∈ C∞(R) we de�ne ξ(φ) = ξ(ρK · φ) with K := supp(ξ) ⊂ R.

Exerise. 1) Show that (ξ ∗ η)′ = ξ′ ∗ η = ξ ∗ η′. Hint: First show that δ ∗ η = η,

and that δ′ ∗ η = η′. Then show we have assoiativity: δ′ ∗ (ξ ∗ η) = (δ′ ∗ ξ) ∗ η.

2) In an exerise above we showed: if φ ∈ C∞c (R) then the onvolution ξ ∗ φ is

smooth. Show that if φ is smooth, and Supp(ξ) is ompat, then ξ ∗ φ will still be

smooth.

1.6. Generalized funtions and di�erential operators. A di�erential equa-

tion an be desribed by the equality ”Af = g”, where A is a di�erential operator.

Let's try to solve suh an equation, when we assume A is a linear di�erential op-

erator, and is invariant under translations (i.e., we'll have Af̄ = Af , where φ̄ is

any �xed translation of φ). An example for suh operator is a di�erential operators

with �xed oe�ients (e.g., Af := f ′′ + 5f ′ + 6f).
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A simple ase is �nding G for whih the equation AG = δ0 holds. Given suh G, and

usingA's invariane under translations, we get that AGx = δx, forGx(t) := G(t−x).

We an use the exerise above to show that A(f ∗h) = (Af)∗h for any two funtions

f, h and then dedue thatA(G ∗ g) = AG ∗ g = δ0 ∗ g = g. Hene, we an �nd a

general solution f for Af = g by solving only one simpler ase AG = δ0. The

solution G is alled Green's funtion of the operator.

Exerise. 1) Let A be a di�erential operator with �xed oe�ients. Choose any

solution for the equation AG = δ0, and desribe the onditions G have to meet

without using generalized funtions.

2) Without using generalized funtions, please explain the equation A(G ∗ g) = g

we got for the solution G.

3) Solve the equation ∆f = δ0 (where ∆ is the Laplaian operator).

1.7. Regularization of generalized funtions.

De�nition. Let {ξλ}λ∈C be a family of generalized funtions. We say the family

is analyti if 〈ξλ, f〉 is analyti (as funtion of λ ∈ R) for every f ∈ C∞c (R).

Example. We denote xλ+ :=




xλ x > 0

0 x ≤ 0
, and de�ne the family by ξλ := xλ+. The

behavior of the funtion hanges as λ hanges: When Re(λ) > 0 we'll have a nie

ontinuous funtion; If Re(λ) = 0 We'll get a step funtion and for Re(λ) ∈ (−1, 0),

xλ+ will not be bounded. We'd like to extend the de�nition analytially for Re(λ) <

−1.

A derivation of xλ+ (both as a omplex funtion or as de�ned for a generalized

funtion) gives ξ′λ = λ · ξλ−1. This is a funtional equation, that enables us to

de�ne ξλ−1 :=
ξ′λ
λ , and thus extend ξλ to every λ ∈ C. This extension isn't

analyti, but is meromorphi: it has a pole in λ = 0, and by the extension formula,

in λ = −1,−2, ....

This is an example for a meromorphi family of generalized funtions. Let's give a

formal de�nition. Our {ξλ}λ∈C has a set of poles {λn} (poles are always disrete),

whose respetive orders are denoted {dn}. The family will be alled meromorphi

if every pole λi has a neighborhood Ui, suh that 〈ξλ, f〉 is analyti for every

f ∈ C∞c (R) and λi 6= λ ∈ Ui.

Exerise. For the above example ξλ := xλ+, �nd the order and the leading oe�-

ient for every pole.
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Example. For a given p ∈ C[x1, ...xn], we denote similarly p+(x1, ...xn)
λ :=



p(x1, ...xn)

λ x > 0

0 x ≤ 0
. The problem of �nding the meromorphi ontinuation for

a general polynomial was open for a while. It was solved by Bernstein by de�ning

a di�erential operator Dpλ+ := b(λ) · pλ−1+ , where b(λ) was a polynomial pointing

on the loation of the poles.

Exerise. 1) Solve the problem of �nding an analyti ontinuation for p+(x1, ...xn)
λ

in the ase p(x, y, z) := x2 + y2 + z2 − a.

2) Solve the problem of �nding an analyti ontinuation for p+(x1, ...xn)
λ
in the

ase p(x, y, z) := x2 + y2 − z2.
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2. Leture 2- topologial properties of C∞c (Rn)

We want to analyze the spae of distributions C−∞(Rn) and to de�ne a topology

on it. For this we use fats from topologial vetor spaes.

2.1. Topologial vetor spaes.

De�nition. A topologial vetor spae (or linear topologial spae) is a linear spae

with a topology, s.t. multipliation by salar and vetors addition is ontinuous.

More preisely: there exists ontinuous operations:

1) + : V × V −→ V

2) · : F × V −→ V , where F is some topologial �eld suh that V is a vetor spae

over it.

This demand limits the topology we an have. For example, giving the spae

disrete topology will fore a disrete topology on the �eld.

Sine addition of points is ontinuous, translation is also ontinuous. This makes

all the points in the spae "similar" and therefore the open sets of every point x

are the same as those around 0. This property is alled homogeneity. We're mainly

interested in "nie" topologial vetor spaes. Spei�ally: We assume all the

topologial vetor spaes are Hausdor�. Note that for a non Hausdor� spae

V we an quotient by the losure of {0} and get a Hausdor� spae. This will make

sense by the following exerise.

De�nition. Let V be a topologial vetor spae over F .

1) We say that a set A ⊆ V is convex if for every a, b ∈ A the linear ombination

ta+ (1− t)b ∈ A where t ∈ [0, 1].

2) We say that V is loally onvex if it has a basis of its topology whih onsists of

onvex sets.

3) For every open onvex set 0 ∈ C in V we set for any x ∈ V : NC(x) = inf{α ∈

R≥0 : xα ∈ C}.

4) We say that a set W ⊆ V is balanced if λλW ⊆W for all |λ| ≤ 1 where λ ∈ F .

Note that a onvex set C is balaned i� it is symmetri (C = −C).
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Exerise. 1) Find a topologial vetor spae whih is not loally onvex (not

neessarily of �nite dimension.

2) Show that any �nite dimensional Hausdor� loally onvex spae is isomorphi

to Fn. This is also true for linear topologial spaes that are not loally onvex,

but the proof is harder.

3) Let V be a loally onvex linear topologial spae. Prove that V is Hausdor� i�

{0} is a losed set.

Remark. From the homogeneity of V , {0} is a losed set i� ∀x ∈ V {x} is a losed set.

The exerise shows a loally onvex linear topologial spae satis�es the separation

axiom T1 i� it satis�es T2.

Exerise. Let 0 ∈ C be an open onvex set in a topologial vetor spae V .

1) Show that NC(x) <∞ for allx ∈ V .

2) Show that if furthermore C is balaned then NC(x) is a semi-norm.

In a loally onvex spae we have a basis to the topology onsisting of onvex sets.

We an assume all the sets are symmetri: First notie it's enough to show this for

open sets around 0 (from homogeneity of the spae). Then, given any open onvex

neighborhood A of 0, we know A ∩ −A is a (non-empty) symmetri onvex open

subset of it. Therefore we have a basis for our topology onsisting of symmetri

onvex sets.

However, there is a bijetion between semi-norms on the spae and symmetri

onvex sets. Given a semi-norm N on V , the bijetion maps N to its unit ball

{x ∈ V |N(x) ≤ 1} (it's symmetri by absolute homogeneity and onvex by the

triangle inequality). Note he semi-normNC(x) we de�ned isn't a norm. Spei�ally,

if C ontains the subspae span{v}, we'll get nC(v) = 0 (even though v 6= 0).

However, given the basis T for our topology, we an not get nC(v) = 0 for all

the sets C ∈ T . Sine in this ase we'd have span{v} ⊆
⋂
C∈T

C, ontraditing the

Hausdor� assumption.

De�nition. A set C ⊆ V is absorbent ∀x ∈ V ∃λ : x
λ ∈ C. i.e., multiplying C

by a big enough salar an reah every point in the spae. For absorbent C ⊆ V

we'll have NC(v) < ∞ for all v ∈ V diretly from de�nition. Every open set is

absorbent, and thus we an de�ne our norm for all the sets in the basis.

Example. The segment {(x, 0) |x ∈ [0, 1]} in R2
isn't absorbent, and for y = (1, 0)

we get nC(y) =∞.
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Exerise. 1) Find a loally onvex topologial vetor spae V suh that V has no

ontinuous norm on it. That is, every onvex open set C ontains a line span{v},

so NC(v) = 0.

2) Find a non loally onvex spae.

In onlusion, a loally onvex spae possess a basis to the topology onsists of ol-

letion of sets that de�nes a system of semi-norms. Some authors use this statement

as the de�nition of loally onvex spae.

2.2. De�ning ompleteness. In a metri spae, a point belongs to the losure

of a given set if and only if it is the limit of some sequene of points belonging to

that set. The onvergene of the sequene (an)n∈N to the point x is de�ned by the

requirement that for any ǫ > 0 there is N ∈ N suh that d(an, x) < ǫ whenever

n ≥ N . This is equivalent to the requirement that for any neighborhood U of x

there is some N ∈ N suh that an belongs to U whenevern ≥ N .

For a general topologial vetor spae V , even though we don't have a metri on

V , we an de�ne Cauhy series:

De�nition. A series {xn} ⊂ V is alled a Cauhy series, if for every neighborhood

U of 0 ∈ V there is an index n0 ∈ N suh that m,n > n0 implies xn − xm ∈ U .

Remark. More generally, if X has a uniform topology, then we an de�ne a notion

of a Cauhy sequene. We will not give the de�nition of a uniform topology, but we

mark that any topologial group possess a uniform topology, and indeed one an

de�ne a notion of a left (resp. right) Cauhy sequene as follows: {xn} is a Cauhy

sequene if for every neighborhood U of e ∈ G there is an index n0 ∈ N suh that

m,n > n0 implies x−1m xn ∈ U (resp. xnx
−1
m ∈ U).

De�nition. 1) A topologial vetor spae is alled sequentially omplete if every

Cauhy sequene in it onverges.

2) A subset Y ⊆ X is alled sequenialy losed if every Cauhy sequene {yn} ∈ Y

onverges to a point y ∈ Y .

The next example shows that we an have losed sets Y that are sequentially losed

but not losed. This example also shows that if the topology is too strong ( not

�rst ountable) then the notion of Cauhy sequene is not the �right notion�.
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Example. Let X be the real interval [0, 1] and let τ be the o-ountable topology

on X ; that is, τ onsists of X and

/O together with all those subsets U of X whose

omplement UC is a ountable set. Let A = [0, 1), and onsider A. Now, {1} /∈ τ

beause Xr {1} = [0, 1) is not ountable. It follows that A is not losed. However,

A is losed and ontains A so A = [0, 1]. Sine 1 is not an element of A, it must be

a limit point of A. Suppose that (an)n∈N is any sequene in A. Let B = {a1, a2, ...}

and let U = BC . Then 1 ∈ U and sine B is ountable, it follows that U is an

open neighborhood of 1 whih ontains no member of the sequene (an)n∈N . It

follows that no sequene in A an onverge to the limit point 1. This argument an

be applied to show that A has no Cauhy sequenes, so it is (trivially) sequentially

losed but not losed.

De�nition. 1) An embedding i : V →֒ W is alled a strit embedding if i : V →֒

i(V ) is an isomorphism of topologial vetor spaes.

2) A spae V is alled omplete if for every strit embedding φ : V →W , the image

φ(V ) is losed.

Remark. * Equivalently, we an de�ne that a spae V is omplete if any Cauhy

net is onvergent. By this de�nition it an be easily seen that any ompete spae

X is also sequentially omplete.

* In the ategory of �rst ountable topologial vetor spaes, ompleteness is equiva-

lent to sequentially ompleteness, and indeed the notion of Cauhy nets is equivalent

to Cauhy sequene, and a set Y ⊆ X is losed i� it is sequentially losed.

Exerise. Find a sequentially omplete spae whih is not omplete. Hint: See

example.

De�nition. 1) A spae V̄ will be alled a ompletion of V if V̄ is omplete and

there is a strit embedding i : V → V̄ , where i(V ) is dense in V̄ .

2) A di�erent de�nition an be made using a universal property: A (strit?)

embedding i : V → V̄ is a ompletion of V if:

(a) V̄ is omplete.

(b) For every map ψ : V → W where W is omplete, there is a unique map

φW : V̄ →W , suh that ψ ≡ φW ◦ i.�

Exerise. (*) Show that these two de�nitions of ompleteness are equivalent.
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This de�nition of ompletion, using the desired property saves us dealing with

Cauhy nets or �lters. However, one has to use them to show that suh ompletion

exists:

Exerise. 1) (*) Show that every linear topologial Hausdor� spae has a omple-

tion.

2) Show that in the ategory of �rst ountable topologial vetor spaes def1⇐⇒

def2⇐⇒ seq.comp.

2.3. Fréhet spaes. Reminder: A Banah spae is a normed spae, whih is

omplete with respet to its norm. A Hilbert spae is a inner produt spae, whih

is omplete with respet to its inner produt.

Theorem. (Hahn-Banah) Let V be a normed TVS, W ⊆ V a linear subspae and

f : W −→ R a ontinuous funtional suh that |f(x)| < C · ‖x‖, then there exists

f̃ : V −→ R suh that f̃ |W = f and

∣∣∣f̃(x)
∣∣∣ < C · ‖x‖.

Exerise. Let W ⊆ V be loally onvex topologial vetor spaes, and set V ∨ and

W∨ to be the ontinuous duals of V and W respetively, and let (∗) denote the

usual dual.

(a) Show that the restrition map V ∗ −→W ∗ is onto.

(b) Show that the restrition map V ∨ −→W∨ is onto.

Every normed spae is (Hausdor� and) loally onvex, sine the open balls in the

spae are onvex, and they give a basis for the topology. We also know that every

normed spae is metri. However, metrizability doesn't fore loal onvexity and

vie versa.

De�nition: A Fréhet spae is a loally onvex omplete metrizable spae.

Exerise. 1) Show that for a loally onvex topologial vetor spae V the following

three onditions are equivalent, thus eah implying that V is a Fréhet spae.

(a) V is metrizable.

(b) V is �rst ountable.

() There is a ountable olletion of semi-norms {ni}i∈N that de�nes the basis for

the topology over V , i.e, Ui,ǫ = {x ∈ V |ni(x) < ǫ} is a basis for the topology.

2) Let V be a loally onvex metrizable spae. Prove V is omplete (and it's a

Fréhet spae) i� it's sequentially omplete.
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Reall that a ompletion of a spae using a norm is the quotient spae of Cauhy

sequenes under the equivalene relation {xn} ∼ {yn} ⇐⇒ lim
n→∞

‖xn − yn‖ = 0.

A ompletion of a spae using a norm results in a Banah spae. A ompletion of

V using some semi-norm n will eliminate all the elements {x ∈ V |n(x) = 0}, and

will de�ne a norm on the quotient, again resulting in a Banah spae. For example,

the ompletion of the spae of step funtions on R, with respet to the semi-norm

‖f‖1 :=
´

R
|f(x)|dx gives the Banah spae L1(R).

Let V be a Fréhet spae. In this ase we have a sequene of semi-norms, ni on V .

We an order them by replaing ni with max
j≤i
{nj}. Denote Vi the ompletion of V

with respet to ni. If two norms ni, nj satisfy ∀x ∈ V, ni(x) ≥ nj(x), we get an

inlusion (that is ontinuous) Vi →֒ Vj . A sequene of asending norms n1 ≤ n2 ≤ ...

will thus give rise to a desending hain of ompletions V1 ←֓ V2 ←֓ V3.... Our

spae V will be de�ned as the inverse limit V = lim
←−

Vi whih in this ase has a

very nie desription: it is the intersetion V =
⋂
i∈N

Vi of these Banah spaes (with

the subspae topology?). If ni, nj are semi-norms we only get a ontinuous map

Vi →֒ Vj(every onverging sequene is mapped to a onverging sequene). In this

ase V will be the inverse limit lim
←−

Vi where the topology on V is generated by all

the sets of the form ϕ−1i (Ui) where Ui is an open set in Vi and ϕi : V = lim
←−

Vi −→ Vi

is the natural map (it is part of the data of lim
←−

Vi).

Example. 1) Let V := C∞(S1) is a Fréhet spae. De�ne the norms {ni}i∈N by

‖f‖ni
:= max

j≤i
sup
x∈S1

{
∣∣f (j)(x)

∣∣}. The ompletion with respet to nk will be Vk =

Ck(S1). This family satisfy ∀x ∈ V, ni(x) ≥ nj(x) so by the argument above we

indeed have C∞(S1) =
⋂
k∈N

Ck(S1).

2) V = C∞(R) is a Fréhet spae. De�ne nKi,n by ‖f‖ni
:= max

j≤i
sup
x∈Ki

{
∣∣f (j)(x)

∣∣}

where Ki = [−i, i]. Notie that this gives an asending hain of seminorms so this

de�nes a Fréhet spae V = lim
←−

Vi. A similar argument an show C∞(Rn) is a

Fréhet spae, and atually also C∞(M) for a manifold M . In these ases we'll

take the supremum over all the possible derivatives.

De�nition. The diret limit of an asending sequene of vetor spaes is the spae

V∞ :=
⋃
n∈N

Vn. This is not a Fréhet spae, but a loally onvex topologial vetor

spae. A onvex subset U ⊆ V∞ will be open i� U
⋂
Vn is open in Vn, for all n.

Every spae C∞(K) has the indued topology from C∞(R). Taking the union of

the asending hain C∞([−1, 1]) ⊂ C∞([−2, 2]) ⊂ ... will give all smooth funtions

with ompat support C∞c (R) = lim
n
C∞([−n, n]) as a diret limit. However, this is
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not a Fréhet spae (it's a diret limit and not an inverse limit). A basi open set

will be

U(ǫn,kn) :=
∑

n∈N

{f ∈ C∞(R) |Supp(f) ⊆ [−n, n], f (kn) < ǫn}

, where the Σ denotes the Minkowski sum, that is A+B := {a+ b|a ∈ A, b ∈ B}.

Exerise. Show that fn ∈ C∞c (R) onverge to f with respet to the topology

de�ned above if and only if it onverges as was de�ned in the �rst leture, i.e,

(a) There is a ompat set K ⊆ R s.t. supp(f) ∪ supp(fn) ⊆ K.

(b) For every k ∈ N the derivatives f
(k)
n (x) onverge uniformly to f (k)(x).

Remark. Notie that the topology on C∞c (R) is ompliated- it is a diret limit of

an inverse limit of Banah spaes!

Exerise. Show that taking a onvex hull instead of a Minkowski sum (i.e., de�ning

U(ǫn,kn) := convn∈N{f ∈ C
∞(R) |Supp(f) ⊆ [−n, n], f (kn) < ǫn}) will result in the

same topology. This shows that C∞c (R) is a loally onvex TVS (although by the

de�nition as a diret limit of Fréhet spaes it is learly a LCTVS).

Finally, Fréhet spaes have several more nie properties:

• Every surjetive map φ : V1 → V2 between Fréhet spaes is an open map

(it's atually enough that V2 is a Fréhet spae and V1 is omplete).

• De�ning K := kerφ, it an be shown that the quotient V1/K is a Fréhet

spae, and fator φ to the omposition V1 → V1/K → V2. The map

V1/K → V2 will be an isomorphism.

• In addition, every losed map φ : V1 → V2 between Fréhet spaes an be

similarly deomposed. First by showing Im(φ) is a Fréhet spae, and then

deomposing V1 → Im(φ)→ V2.

2.4. Sequene spaes. As an example for Fréhet spaes we'll analyze sequene

spaes. Reminder: lp is the spae of all sequenes {xn}n∈N over R, suh that

∞∑
n=1
|xn|

p <∞. It is a Banah spae. For p = 2, it is also a Hilbert spae.

Let SW (N) be the spae of all the sequenes whih deays to zero faster than any

polynomial, i.e., ∀n ∈ N, lim
i−→∞

xi · i
n = 0. One norm over suh sequenes an be

||{xi}||n = sup
i∈N
{|xi · i

n|} = ||xi · i
n||l∞ . In that norm we an easily see that every

Cauhy sequene onverges. De�ne the topology on SW (N) by the family of norms

||{xi}||n and this de�nes a Fréhet spae. Thus, this is an example for a Fréhet

spae whih is not a Banah spae.
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QUESTION: How an we see every Cauhy sequene onverges? Why isn't it a

Banah spae?

The dual spae V ∗ will be
{
{xi}i∈N | ∃n, c : xi < c · in

}
. This is a union of Banah

spaes, as opposed to the intersetion we had when de�ning the ompletion of a

Fréhet spae (we'll talk about the dual spae more next leture). Note that both

V and V ∗ ontain the subspae of all sequenes with ompat support - only �nite

number of non-zero elements.

QUESTION: Why is V ∗ the dual of V ?

Atually, every separable spae an be established as a sequene spae. The el-

ements of the spae will orrespond to in�nite sequenes. The elements in the

ountable dense subset of the spae will orrespond to the sequenes with ompat

support.

Smooth funtions on the unit irle, C∞(S1), orrespond to sequenes {xi}i∈N

deaying faster than all polynomials. More preisely, we an view f ∈ C∞(S1) as

a periodi funtion in C∞periodic(R) whih an be written as f(x) =
∑
an · e

int
. So

we attah f 7−→ an and an deays faster then any polynomial.

Exerise. 1) Show that the Fourier transform F : C∞(S1) −→ SW (Z) by f 7−→

an is an isomorphism of Fréhet spaes, that is, show that for any seminorm Pi

of SW (Z), there exists seminorm Sj of C∞(S1) and C ∈ R suh that for any

f ∈ C∞(S1), ‖F(f)‖Pi
< C · ‖f‖Sj

.

2) De�ne a Fréhet topology on S(R) = {f ∈ C∞(R)| lim
x→±∞

f (n)(x) · xk −→ 0∀k}.
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3. Leture 3- C−∞(Rn)- topology and filtrations.

3.1. Topologies of the spae of distributions.

Remark. Let U ⊆ Rn be an open set. Then we an de�neC−∞(U) := (C∞c (U))∗.

De�nition. 1) Let V be topologial vetor spae. A subset B ⊆ V is alled bounded

if for every open U ⊆ V exists λ suh that B ⊆ λ · U . When the topology on V

is given by a sequene of norms, B will bounded i� it is bounded with respet to

every one of the norms.

2) Denote V ∗ = {f : V → R : f is linear and ontinuous}. There are many topolo-

gies we an de�ne on V ∗, but we will onsider only two topologies. V ∗ with the

weak topology will be denoted V ∗W , and with and strong one V ∗S . Given ǫ > 0 and

S ⊆ V denote Uǫ,S = {f ∈ V ∗ : ∀x ∈ S, f(x) < ǫ}. The topology on V ∗w is indued

by the basis:

B := {Uǫ,S : ǫ > 0, |S| <∞} ,

while the topology on V ∗S is indued by the basis:

B := {Uǫ,S : ǫ > 0, S is bounded} .

In partiular, every open set in V ∗W is open in V ∗S .

By de�nition, a sequene {fn} ⊆ V
∗
onverges to f ∈ V ∗ i� for every Uǫ,S ∈ B there

exists N ∈ N s.t. (fn − f) ∈ Uǫ,S for n > N . That is, ∀x ∈ S, fn(x) − f(x) < ǫ.

Therefore {fn} onverges to f under the weak topology i� it onverges point-wise,

and it onverges under the strong topology i� it onverges uniformly on every

bounded set.

Example: Let V = R. Let ψ be a bump funtion. Notie that gn(x) = ψ(x) + n

onverges pointwise to 0 (and hene also weakly). gn doesn't onverges uniformly

to 0, but it does onverges uniformly on bounded sets to 0 so it strongly onverges

to 0.

Assume V is a Fréhet spae. Reall that we an de�neV as a inverse limit of

Banah spaes V =
⋂
i∈N

Vi where Vi is the ompletion of V with respet to an

inreasing sequene of semi-norms ni. If we dualize the sequene {Vi} we get an

inreasing sequene V ∗1 ⊆ V ∗2 ⊆ ... ⊆ V ∗S = lim
−→

V ∗i , and we get that V ∗S is a diret

limit of Banah spaes (as a topologial vetor spae).

Exerise. Consider the embedding C∞c (R) →֒ C−∞(R), de�ned by f 7→ ξf . Show

that:
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1) This embedding is dense with respet to the weak topology on C−∞(R).

2) This embedding is dense with respet to the strong topology on C−∞(R).

3) C−∞(R)w is not omplete but it is sequentially omplete.

4) C−∞(R)w = C∞c (R)#- the dual spae (as a linear spae).

5) C−∞(R)S = C−∞(R)S - omplete.

3.2. Sheaf of distributions.

De�nition. Let U1 ⊆ U2 ⊆ Rn be open sets. Every funtion f ∈ C∞c (U1) an

be extended to a funtion f̃ ∈ C∞c (U2) by de�ning f̃ |U2\U1
≡ 0, hene we have

an embedding C∞c (U1) →֒ C∞c (U2). This embedding de�nes a restrition map

C−∞(U2)→ C−∞(U1), mapping ξ 7→ ξ |U1
, with ξ |U1

(f) := ξ(f̃).

Remark. For an open U ⊂ Rn, the topology on C∞c (U) is generally not the indued

topology from C∞c (Rn) under the embedding C∞c (U) →֒ C∞c (Rn). For every om-

pat K ⊂ U , we have C∞K (U) ⊂ C∞c (U). Here the topology on C∞K (U) is indeed

the indued topology from C∞c (U).

We will prove next that with respet to the restrition of distributions de�ned

above, the distributions form a sheaf.

Lemma: Let f ∈ C∞c (U), U =
⋃
i∈I

Ui. Then f an be written as a sum f =
∑
i∈I

fi

where fi ∈ C
∞
c (Ui). Moreover, for every x ∈ U , the number of sets |{i ∈ I : fi(x) 6=

0}| will be �nite.

Proof. We an assume that Ui are balls (otherwise, replae eah Ui by the balls

overing it). Denote K := supp (f). It is a ompat set overed by open balls,

so there exists a �nite sub-over: K ⊆
n⋃
i=1

Ui =
n⋃
i=1

B (xi, ri). Sine the over is

open and K is losed, there exists ǫ > 0 suh that K ⊆
n⋃
i=1

B (xi, ri − ǫ). Let ρi be

smooth step funtions satisfying ρi|B(xi,ri−ε) ≡ 1, ρi|B(xi,ri)
c ≡ 0. Sine ∀x ∈ K,∑n

i=1 ρi(x) 6= 0, we an de�ne:

fi =





ρi·f∑
n
i=1

ρi
x ∈ K

0 x /∈ K

�
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Theorem. With respet to the restrition map de�ned above, the distributions form

a sheaf, that is, given an open U ⊆ Rn, and open over U =
⋃
i∈I

Ui, we have:

1) (Identity axiom) Let ξ ∈ C−∞(U). If ∀i, ξ|Ui
≡ 0, then ξ|U ≡ 0.

2) (Glueability axiom) Given a olletion {ξi}i∈I , ξi ∈ C
−∞(Ui) that agree on in-

tersetions (i.e. ∀i, j ∈ I, ξi|Ui∩Uj
≡ ξj |Ui∩Uj

), there exists ξ ∈ C−∞(U), satisfying

ξ|Ui
≡ ξi for any i.

Proof. 1) Given f ∈ C∞c (U) we need to show ξ(f) = 0. Indeed, by the lemma

f ≡ f1 + ...fn, with fi ∈ C
∞
c (Ui). Hene ξ(f) = ξ(

n∑
i=1

fi) =
n∑
i=1

ξ(fi) = 0.

2) We �rst use the fat that there exists a partition of unity, that is, 1 =
∑
λi(x)

where supp(λi) ⊆ Ui and the sum is �nite for any x ∈ U an also that for any

ompat K ⊆ U we have that λi|K ≡ 0 for all but �nitely many i's. Now �x some

partition of unity {λi} and let ξi ∈ C
−∞(Ui). De�ne ξ(f) :=

∑
i∈I ξi(λif). Note

that f is supported in some ompat K so the sum is �nite, so this is well de�ned.

It is lear that ξ is linear. We need to prove that it is ontinuous, and that ξ|Ui
= ξi:

Let fn → f ∈ C∞c (U). Then also λi · fn → λi · f as the multipliation (f, g) 7−→

f · g is ontinuous. As suppfn ∪ Suppf ⊆ K for some K ⊆ U , we have that

fλi ≡ 0 for all but �nitely many i's so we an write ξ(f) :=
∑n
i=1 ξi(λif) and

ξ(fn) :=
∑n

i=1 ξi(λifn) for any n. By the ontinuity of ξi, ξi(λi · fn) → ξi(λi · f)

and therefore ξ(fn) =
∑
i ξi(λi · fn) →

∑
i ξi(λi · f) = ξ(f) so ξ ontinuous. Now

let f ∈ C∞c (Uj), then

ξ(f) =
∑

i

ξi(λif) =
∑

i

ξj(λif) = ξj(
∑

i

λif) = ξj(f)

where the seond equality follows from the fat that λif ∈ C∞c (Uj ∩ Ui) and

ξi|Ui∩Uj
≡ ξj |Ui∩Uj

.

There is also a seond proof for the ontinuity of ξ is working with the open sets

in the topology of C∞c (U): As ξi are ontinuous, they are bounded in some onvex

open set Bi of 0, so ξi(Bi) < ǫ. Notie that Conv(∪Bi) is open in

⊕
i∈I C

∞
c (Ui)

(where eah Bi is an open set in C∞c (Ui) and hene a set in

⊕
i∈I C

∞
c (Ui)), as

Conv(∪Bi) ∩ C
∞
c (Ui) = Bi. Notie that ϕ(Conv(∪Bi)) is open. Now let f ∈

ϕ(Conv(∪Bi)). We an write f =
∑n

ji=1 aifi where fi ∈ Bji and

∑
ai = 0.

Therefore ξ(f) :=
∑
ξi(aifi) <

∑
ai · ǫ = ǫ and ξ is bounded on B. �
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3.3. Filtration on a spae of distributions.

Exerise. V := C∞c (U) = {f ∈ C∞c (Rn) : ∀x /∈ U, ∀ di�erential operator L, Lf(x) = 0}.

Consider U = Rn r Rk. We wish to desribe the spae of distributions supported

in Rk, denoted C−∞
Rk (Rn). Notie that:

C−∞
Rk (Rn) = {ξ ∈ C−∞(Rn)|∀f ∈ C∞c (Rn rRk) it holds that ξ(f) = 0}

and by ontinuity this equals

= {ξ ∈ C−∞(Rn)|∀f ∈ C∞c (Rn/Rk) it holds that ξ(f) = 0} = {ξ| ξ|V = 0}

Notie that we an de�ne a natural desending �ltration on V by:

V ⊆ Vm = {f ∈ C∞c (Rn)|∀i ∈ Nn−k where |i| ≤ m it holds that

∂if

(∂x)
i |Rk = 0}

We see immediately that f ∈ Vm(C∞c (Rn)) implies f ∈ Vm−1(C
∞
c (Rn)), hene

this is a desending hain. Aordingly, we an de�ne a asending �ltration on

C−∞
Rk (Rn) by:

Fm(C−∞
Rk (Rn)) = V ∗m = {ξ ∈ C−∞

Rk (Rn) : ξ|Vm
= 0} ⊆ C−∞

Rk (Rn).

Exerise. 1) ∩Vm = V = C∞c (Rn rRk).

2) ∪Fm 6= C−∞
Rk (Rn).

3) Let U ⊆ Rn be open and U ompat. Show that for every ξ ∈ C∞
Rk(R

n)∗ there

exists ξ′ ∈ Fm suh that ξ|U = ξ′|U , thus
⋃∞
i=0 Fi overs C

∞
Rk(R

n)∗ loally.

4) Consider a smooth funtion ϕ : Rn → Rn that �xes Rk. Show that hanging

oordinates using ϕ for ξ ∈ Fi we get a distribution in Fi (so Fi is preserved under

hange of oordinates: ϕ∗(Fi) = Fi , meaning: ∀ξ ∈ Fi, ξ(ϕ(f)) ∈ Fi).

Theorem. Fm ≃ ⊕i∈Nn−k,|i|≤m
∂i(C−∞(Rk))

(∂x)i
as vetor spaes.

Proof. 1)We will prove form = 0. Let ξ ∈ C−∞(Rk), we an assign φ : ξ 7−→ ξ̃ ∈ F0

by ξ̃(f) = f |Rk . Notie that ξ̃(f) = 0 for any f ∈ F0 so it is well de�ned. It is

lear that it is injetive as if ξ̃(f) = 0 for all f ∈ C∞c (Rn) then ξ(f |Rk) = 0 for any

f but any map g ∈ C∞c (Rk) an be extended to g̃ suh that g̃|Rk = g. It is left to

prove surjetivity and we are done. Let η ∈ F0. Assign η 7−→ η̃ ∈ C−∞(Rk) by

η̃(f) := η(f̃) where f̃ satisfy f̃ |Rk = f .

Notie that η̃ is well de�ned as if f̃ , g̃ satisfy f̃ |Rk = g̃|Rk = f then η(g̃) = η(f̃).

Also η̃ is ontinuous as if fn −→ f then we an hoose lifts suh that f̃n −→ f̃ and
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as η is ontinuous it follows. We got that φ(η̃) = η so φ is surjetive and we are

done. Now for m > 0 this is a generalization to the exerise that any distribution

supported on 0 is a ombination of derivatives of δ, and it will be proved in leture

5. �

We an de�ne Gm = ⊕i∈Nn−k,|i|=m
∂i(C−∞(Rk))

(∂x)i
and hene Gm ≃ Fm/Fm−1.

Exerise. Show that this deomposition is not invariant under hange of oordi-

nates, that is ϕ(Gm) 6= Gm, ϕ(G(i)) 6= G(i) where (i) is a multi-index.
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4. Leture 4 - P adi numbers and L spaes

We want to �nd integer solution for an equation of the form of an integer valued

polynomial p(X) = 0. If there exists suh a solution X , then it must satis�es

the same equation modulo some prime p and also modulo pn for any 1 < n ∈ N.

Therefore we want to de�ne some �reature� denoted Zp, suh that having a solution

in Zp is the same as having a solution modpn for any n. For this we will need to

de�ne the p-adi numbers.

4.1. De�ning p-adi numbers.

De�nition. 1) A topologial �eld is a �eld F , together with a topology, suh that

addition, multipliation and the multipliative and additive inverses are ontinuous

operations.

2) Given a �eld F , an absolute value is a funtion | | : F → R+
that satis�es:

* The triangle inequality : |x+ y| ≤ |x|+ |y|.

*|x||y| = |xy|.

*|x| = 0⇔ x = 0.

For topologial �eld we demand the absolute value to be ontinuous map. Notie

that every absolute value satis�es |1| = 1 (as |1| = |1| · |1|, and |1| 6= 0).

Example. 1) The trivial absolute value, de�ned by: |x|0 :=




0 x = 0

1 x 6= 0

2) The standard absolute value on R, whih we'll denote | |∞.

Now if we want to solve the equation f(X) = 0 modulo pn we want pn to be zero.

Therefore, when we de�ne the p-adi norm we want ‖pn‖ to be �very small� as n

grows.

De�nition. For any given integer a we de�ne the ordpa to be the highest power

m of p suh that pm|a. For x = a/b ∈ Q we de�ne ordpx = ordpa− ordpb. De�ne

the p− adic norm by ‖x‖p = 0 if x = 0 and ‖x‖p = 1/pordpx otherwise.

Proposition. The map ‖ ‖p de�ned above gives an absolute value on Q.
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Proof. ‖a/b‖p = 0 then either a/b = 0 or ordpa = ∞ and therefore a/b = 0. Note

that:

∥∥∥ac
bd

∥∥∥
p
=

1

pordp(ac)−ordp(bd)
=

1

pordp(a)−ordp(b)
·

1

pordp(c)−ordp(d)
=
∥∥∥a
b

∥∥∥
p
·
∥∥∥ c
d

∥∥∥
p

and also that triangle inequality holds:

∥∥∥a
b
+
c

d

∥∥∥
p
=

∥∥∥∥
ad+ bc

bd

∥∥∥∥
p

= 1/(pordp(ad+bc)−ordp(bd)) ≤ 1/(pmin(ordp(ad),rdp(bc))−ordp(b)−ordp(d)) =

1/(pmin(ordp(a)+ordp(d),ordp(b)+ordp(c))−ordp(b)−ordp(d)) = 1/(pmin(ordp(a)−ordp(b),ordp(c)−ordp(d))) =

1/(pmin(ordp(x),ordp(y))) = max(
∥∥∥a
b

∥∥∥
p
,
∥∥∥ c
d

∥∥∥
p
) ≤

∥∥∥a
b

∥∥∥
p
+
∥∥∥ c
d

∥∥∥
p
.

�

De�nition. A norm is alled non arhimedean if ‖x+ y‖ ≤ max(‖x‖ , ‖y‖) always

holds. In partiular, if ‖x‖ 6= ‖y‖ ⇒ ‖x+ y‖ = max(| ‖x‖ , ‖y‖). Note that by the

last proposition,‖ ‖p is non arhimedean.

2) Two norms | |, | |′ on F are alled equivalent (denoted | | ∼ | |′) if for any

{an} ∈ Q, an is a Cauhy sequene with respet to | | i� it is a Cauhy sequene

with respet to | |′.

Theorem. (Ostrowski Theorem) Every non-trivial norm ‖ ‖on Q is equivalent to

‖ ‖p for some p, or the usual norm on Q indued from R, denoted ‖ ‖∞.

Proof. Case (i): There exists n ∈ N suh that ‖n‖ > 1. Let n0 be the least suh n.

So there exists 0 < α < 1 ‖n0‖ = nα0 . We write eah n in the base of n0, that is we

hoose 0 ≤ {ai} < n and {ai} ∈ N suh that n = a0 + a1n0 + ...akn
k
0 . Note that:

‖n‖ =
∥∥a0 + a1n0 + ...akn

k
0

∥∥ ≤ ‖a0‖+ ‖a1‖ · nα0 + ...+ ‖ak‖ · n
αk
0

By the hoie of n0 we have that ‖ai‖ ≤ 1 so

‖n‖ ≤
∑

i

niα0 = nkα0 (
∑

(1 + n−α0 + ...n−kα0 ) ≤ nα ·

(
∞∑

t=1

(
n−α0

)t
)

= nα · C
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sine n ≥ nk0 . Therefore ‖n‖ ≤ n
α ·C and the onstant C doesn't depend on n. By

hoosing large enough N we an show that

∥∥nN
∥∥ ≤ nNα ·C so ‖n‖ ≤ nα ·C1/N

for

any N . This implies that ‖n‖ ≤ nα

Now we get the inequality in the other diretion also: if n is written in the base of

n0 as before, we have that nk+1
0 > n ≥ nk0 . Also

∥∥nk+1
0

∥∥ =
∥∥n+ nk+1

0 − n
∥∥ ≤ ‖n‖+

∥∥nk+1
0 − n

∥∥ ,

so using ‖n‖ ≤ nαand n ≥ nk0 we get:

‖n‖ ≥
∥∥nk+1

0

∥∥−
∥∥nk+1

0 − n
∥∥ ≥ nα(k+1)

0 −
(
nk+1
0 − n

)α
≥ n

α(k+1)
0 −

(
nk+1
0 − nk0

)α

= n
α(k+1)
0 (1−

(
1−

1

n0

)α
≥ nαC′(n0, α).

.

Again, ‖n‖ ≥ nα so ‖n‖ = nα. This de�nes the norm uniquely on all Q as ‖ab‖ =

‖a‖ · ‖b‖ so taking a = m, b = n/m we get ‖n/m‖ = (n/m)
α
. By writing Cauhy

sequenes we see that ‖ ‖αis equivalent to ‖ ‖∞.

ase ii) For any n ‖n‖ ≤ 1:

Let n0be the least n suh that ‖n‖ < 1 (otherwise ‖n‖ = 1 for any n 6= 0). n0 must

be a prime sine if n0 = n1 · n2 then the norm of n1 or n2 must be smaller than 1

and we get a ontradition to the minimality of n0. Denote p = n0. We laim that

‖q‖ = 1 if q 6= p prime:

Suppose ‖q‖ < 1, so for large N we have

∥∥qN
∥∥ < 1/2 . Also, for large M we have∥∥PM

∥∥ < 1/2. sine gcd(pM , qN ) = 1 then there existsm,n suh thatmpM+nqN =

1 but then:

1 = ‖1‖ =
∥∥mpM + nqN

∥∥ ≤
∥∥mpM

∥∥+
∥∥nqN

∥∥ = ‖m‖·
∥∥pM

∥∥+‖n‖
∥∥qM

∥∥ < 1/2+1/2 < 1

So ‖q‖ = 1. Now let a = pb11 · ... · p
br
r . If we denote ‖p‖ = ρ then we get that‖a‖ =

‖p‖
ordp(a) = ρordp(a). This de�nes the norm uniquely on Q. It is an easy exerise

to show that this norm is equivalent to ‖ ‖p. �

Proposition. Show that for any 2 norms on a �eld ‖ ‖1 , ‖ ‖2are equivalent i�

‖ ‖1 = ‖ ‖
α
2 .
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Proof. Assume ‖ ‖1 = ‖ ‖
α
2 . Then it is lear that ‖an‖ −→ 0 i� ‖an‖

α
−→ 0. Now

let ‖ ‖1 , ‖ ‖2 be equivalent norms . We divide to ases, aording to Ostrowski

theorem:

Case1:‖ ‖1 = ‖ ‖α and ‖ ‖2 = ‖ ‖β for 0 < α, β < 1.

Case2: ‖ ‖1 ∼ ‖‖p , ‖ ‖2 ∼ ‖‖q. If q 6= p then the norms are not equivalent as

{pk} is a Cauhy series in ‖ ‖1 but not in ‖ ‖q. Therefore by the proof of the last

theorem, ‖a‖1 = ‖p‖
ordp(a) = ρ

ordp(a)
1 and ‖a‖2 = ‖p‖

ordp(a) = ρ
ordp(a)
2 = ρ

βordp(a)
1

for any a ∈ Z and therefore ‖ ‖2 = ‖ ‖
β
1 .

Case 3: ‖ ‖1 ∼ ‖‖p , ‖ ‖2 ∼ ‖‖∞(or the opposite) . Then {p
k} is a Cauhy series in

‖ ‖1 but not in ‖ ‖2. �

Proposition. Prove that addition, multipliation, and inverse is ontinuous for

any norm on a �eld F .

Proof. Let ǫ > 0 and x, y ∈ F . Let x′, y′ be suh that ‖x′ − x‖ < ǫ/2 ,‖y′ − y‖ <

ǫ/2. Then ‖(x+ y)− (x′ + y′)‖ ≤ ‖x′ − x‖+‖y′ − y‖ < ǫ. For multipliity inverse:

Let x and ǫ > 0, we have

‖x− x′‖ < δ = min(ǫ · ‖x‖
2
/2, 1/2)

then ‖x− x′ + x′‖ ≤ ‖x− x′‖ + ‖x′‖ < δ + ‖x′‖ and the same for ‖x′ − x+ x‖ ≤

‖x− x′‖+ ‖x‖ < δ + ‖x‖so |‖x‖ − ‖x′‖| < δ.

‖1/x′ − 1/x‖ =

∥∥∥∥
x′ − x

xx′

∥∥∥∥ = ‖x− x′‖ / ‖xx′‖ =

‖x− x′‖ / ‖x‖ ‖x′‖ < δ ·
1

‖x‖
2
(1 − δ)

< ǫ ‖x‖
2
/2 ·

2

‖x‖
2 = ǫ.

The same idea for additive inverse, and multipliation. �

There are several nie properties of a non-arhimedean norm:

1) every triangle (x, y, z) is isoseles! (�shve shokaim�).

2) every open ball of radius r with enter x has all of its points as a enter as well.

Proof: Let y ∈ B(x, r), and z ∈ B(y, r), then ‖z − x‖ = ‖z − y + y − x‖ ≤

max(‖z − y‖ , ‖y − x‖) ≤ r so z ∈ B(x, r) so B(y, r) ⊆ B(x, r). The other way, let

w ∈ B(x, r), then ‖w − y‖ = ‖w − x+ x− y‖ ≤ max(‖w − x‖ , ‖y − x‖) ≤ r. So

B(y, r) = B(x, r).

3) Every Ball Br(x) is open and losed.
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4) If 2 p-adi balls are not distint, then one of them ontains the other.

Proof: Let be B(x, r1) and B(y, r2) suh that B(x, r1) ∩ B(y, r2) 6= /O then there

exists z suh that ‖z − x‖ < r1 and ‖z − y‖ < r2. Lets assume r2 ≥ r1 Let

w ∈ B(x, r1) then

‖w − y‖ = ‖w − x+ x− z + z − y‖ ≤ max(‖w − x‖ , ‖x− z‖ , ‖z − y‖) ≤ r2.

Now we an de�ne the p-adi numbers.

De�nition. Let p be a prime number. The �eld of p-adi numbers, denoted Qp,

is the ompletion of Q with respet to the p-adi absolute value. The ompletion

is de�ned just as we did in the ase of the arhimedean norm on Q- by equivalene

lasses of Cauhy sequenes. Therefore, any element a ∈ Qp is represented by a

Cauhy sequene {an} ∈ Q with respet to ‖ ‖p. We say that a ∼ b if {an} ∼ {bn}

if ‖an − bn‖p −→ 0 and we de�ne the norm of a ∈ Qp by limi→∞ ‖ai‖p (it exists

by the following proposition).

Remark. Notie that just like R, this ompletion is not algebraially losed. Try to

�nd an equation in Qp when the solution is not in Qp.

Proposition. If {ai} is a Cauhy series in Q with respet to ‖ ‖p , then limi→∞ ‖ai‖p
exists.

Remark. If {ai} equivalent to {0} then by de�nition it exists. Else, for every ǫ > 0

there is a sub-sequene aiksuh that ‖aik‖p > ǫ. We take N large enough suh that

‖ai − ai′‖p < ǫ for every i, i′ > N , by the Cauhy property. Then ‖ai − aik‖p < ǫ,

so ‖aik − ai‖p < ‖aik‖p so by the property that every triangle is isoseles, we have

that ‖aik‖p = ‖aik − (aik − ai)‖p = ‖ai‖p. So there exists N suh that ‖ai‖p is

onstant for i > N .

Theorem. Qp is omplete.

Proof. Let {aj} ∈ Qp be a sequene of equivalene lasses with{aji} their represen-

tatives as Cauhy sequenes in Q . Assume that {aj} is Cauhy, i.e, there exists

M suh that for any j, j′ > M :

‖{aj − aj′}‖ := lim
i
‖aji − aj′i‖ < ǫ.

This means that there isNj,j′ suh that for i > Nj,j′ : ‖aji − aj′i‖ < ǫ. In partiular,

for any j, there exists Nj suh that for any i, i′ ≥ Nj : ‖aji − aji′‖ < p−j . We laim

that {b} = {akNk
} is the limit of {aj}. Notie that:

‖{b− aj}‖ = lim
k
‖{akNK

− ajk}‖ = lim
k

∥∥akNk
− akNj,k

+ akNj,k
− ajNjk

+ ajNjk
− ajk

∥∥ .
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For large enough k we have, for any j > M :

∥∥akNk
− akNj,k

+ akNj,k
− ajNjk

+ ajNjk
− ajk

∥∥ ≤ max(
∥∥akNk

− akNjk

∥∥ ,
∥∥akNjk

− ajNjk

∥∥ ,
∥∥ajNjk

− ajk
∥∥) −→

So {b} is indeed the limit. �

Theorem. Every equivalene lass a ∈ Qp for whih ‖a‖p ≤ 1 has exatly one

representative Cauhy sequene of the form {ai} for whih:

1) 0 ≤ ai < pi for i = 1, 2, ...

2) ai ≡ ai+1(mod(p
i)) for i = 1, 2, ...

Proof. At �rst we prove the uniqueness: If {a′i} is a di�erent sequene satisfying

(1) and (2) and if there exists i0 suh that ai0 6= a′i0 then ai 6= a′i(mod(p
i0 )) for

every i > i0. Therefore ‖ai − a
′
i‖ > 1/pi0 so {a′i}, {ai} are not equivalent. Now we

prove existene: Suppose we have a Cauhy sequene {bi} ∈ Qp, we want to �nd an

equivalent sequene {ai} with the above property. We use the following lemma: �

Lemma. If x ∈ Q and ‖x‖p ≤ 1, then for any i there exists an integer α ∈ Z suh

that ‖α− x‖p ≤ p
−i
. The integer α an be hosen in the set {0, 1, 2, ...pi − 1}.

Proof. Let x = a/b written in the form where (gcd(a, b) = 1). Sine ‖x‖p ≤ 1 it

follows that p does not divide b and therefore b and piare relatively prime. Then

we an �nd m,n ∈ Z suh that bm+ npi = 1 . The intuition is that bm is lose to

1 up to a small p-adi length so it is a good approximation to 1 so am is a good

approximation to a/b. So we pik α = am and get:

‖α− x‖ = ‖am− a/b‖ = ‖a/b‖ · ‖bm− 1‖ ≤ ‖bm− 1‖ =
∥∥npi

∥∥ ≤ 1/pi

Note that we an add multiples of pi to α and still have

∥∥α− k · pi − x
∥∥ ≤ max(1/pi, 1/pi) ≤ 1/pi.

Therefore we an assume that α ∈ {0, ....pi − 1}. �

Now bak to the proof:

Proof. Bak to {bi}. Let Nj be the number suh that for every i, i′ > Nj we have

‖bi − bi′‖ < p−j , and we an hooseNj to be stritly inreasing with j, and Nj > j.

Observe that ‖bi‖ ≤ 1 if i > N1. Indeed, for all i
′ > N1 we have that ‖bi − bi′‖ <

1/p , ‖bi‖ ≤ max(‖bi′‖ , ‖bi − bi′‖) and for i′ →∞ we have that ‖bi′‖ → ‖a‖p ≤ 1.
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Now we use the lemma and get a sequene {aj} when 0 ≤ aj < pj suh that∥∥aj − bNj

∥∥ < p−j . We laim that{aj} is equivalent to {bi}, and satis�es the ondi-

tions of the theorem. It is indeed satis�es the onditions as:

‖aj+1 − aj‖ =
∥∥aj+1 − bNj+1

+ bNj+1
− bNj

− (aj − bNj
)
∥∥

≤ max(
∥∥aj+1 − bNj+1

∥∥ ,
∥∥bNj+1

− bNj

∥∥ ,
∥∥aj − bNj

∥∥) ≤ p−j

So aj+1 − aj has at least p
j
as a ommon divisor as required.

Furthermore, for any j and any i > Nj :

‖ai − bi‖ =
∥∥ai − aj + aj − bNj

− (bi − bNj
)
∥∥ ≤ max(‖ai − aj‖ ,

∥∥aj − bNj

∥∥ ,
∥∥bi − bNj

∥∥) ≤ p−j .

So {ai} ∽ {bi}. �

Now, if we have some {a} ∈ Qp with ‖a‖ ≥ 1 then there exists some m suh that

‖a · pm‖ ≤ 1 and we have numbers with negative powers. Therefore we an present

the p-adi numbers as:

Qp := {

∞∑

i=−k

ai · p
i, where ai ∈ {0...p

i − 1}}.

We de�ne the ring of integers , denoted Zp as Zp := {x ∈ Qp| ‖x‖p ≤ 1} or equiva-

lently Zp := {
∑∞
i=0 ai · p

i, where ai ∈ {0...p
i − 1}} or equivalently Zp := Z‖ ‖

p
- the

losure of Z with respet to the p-adi norm. Notie that Zp is indeed a ring and

that the only invertible elements are x ∈ Zp with ‖x‖p = 1.

4.2. p-adi expansions. We want to write the p-adi expansions of elements q

in Q. If q ∈ N, that's just writing its p-base expansion. For example, (126)5 =

”...002001.” Let x := m
n be some rational number, with (n,m) = 1. It is enough to

desribe the expansion when p ∤ m (that is, when x ∈ Zp ∩Q) as otherwise we an

multiply x by pk for some k, alulate the expansion, and move the point k plaes

to the left.

We an't take remainder of x modulo p, as with integers. Instead, we an alulate

the fration x = m
n in Fpk for k ∈ N. Thus, the expansion of x in Qp is alulated

indutively:
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• Write the digit x0 := [mn ] ∈ Fp.

• The nominator of the di�erene

m
n −x0 = m−n·x0

n is divisible by p. Rede�ne

our fration to be x := 1
p · (

m
n − x0), and ontinue indutively.

Example. Calulate

1
2 ∈ Q7. We start by solving the equation 2x0 = 1(mod7).

The answer is x0 = 4. In the seond ase we alulate 1
7 (

1
2−4) = x1. So 2·(7x1+4) =

1(mod49). Therefore x1 = 3. We ontinue by indution and get the required

expansion.

Every ball in Qp is a disjoint union of p balls. For p = 2, the ball Z2 = Bc(0, 1) =

Bo(0, 2) onsists of numbers with no digits to the right of the point. It's a disjoint

union of two balls, B0 and B1 - where eah Bi onsists of all numbers ending with

the digit

′i′. Similarly, B0 = B00

⋃
B01, B1 = B10

⋃
B11, where the elements in

Bij end with the digits

′ij′. And so on.

This reursive struture implies p-adi integers are homeomorphi to the Cantor

set.

Exerise. Show Zp ∼= Cantor set as topologial spaes, where the Cantor set has

the topology indued by the real numbers. The exerise proves Zp is a ompat set.

4.3. Inverse limits.

De�nition. Let A1 ← A2 ← A3 ← ... be a sequene of Abelian groups {Ai}

together with a set of homomorphisms {fij : Aj → Ai | j > i}, suh that fik =

fij ◦ fjk, ∀i ≤ j ≤ k. An inverse limit of a sequene of Abelian groups is de�ned

by:

lim←−Ai = {
−→a ∈

∏

i∈N

Ai : ai = fij(aj), ∀i ≤ j ∈ N}

Exerise. 1) Take Ai := Z/piZ, and fij to be the projetion Z/pjZ → Z/piZ.

Prove that lim←−Z/p
nZ ≃ Zp as a topologial ring.

2)Qp is the loalization by p of Zp and Qp = p−1Zp = {p
−ka|a ∈ Zp} ≃ lim←−Q/p

nZ,

again, as topologial rings.

2) Prove that Qp ≃ Cantor set - {1}.

3) Prove that Qnp
∼= Qp.

4) Let U ⊂ Qnp be some open set. Show that either U is homeomorphi to the

Cantor set, or to Cantor set-{1}.
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4.4. Haar measure and loal �elds. Let X be a topologial spae. Let Cc(X)

be the spae of ontinuous funtions with ompat support on X and onsider

Cc(X)∗- the spae of smooth measures.

Theorem. (Haar): Let G be a loally ompat topologial group. Then:

1) There exists a measure µon X suh that µ(U) = µ(gU) for any measurable set

(Or equivalently, there exists φ ∈ Cc(X)∗ suh that for any g ∈ G, φ(f) = φ(fg)

where fg(x) = f(g−1 · x)).

2) This measure is unique up to a salar.

Exerise. 1) Prove Haar theorem for (Qp,+).

2) We an de�ne another invariant measure µa(B) = µ(aB) for any a ∈ Qp. Show

that µa = |a| · µ.

De�nition. A local field is a topologial �eld that is not disrete and loally

ompat.

Theorem. Any loal �eld F is isomorphi (as topologial �eld) to one of the fol-

lowing:

* Arhimedean �elds- R or C.

* Finite extensions of Qp.

* Finite extensions of the formal Laurent series: - Fq((t)) = {
∑∞
i=−k ait

i} where

Fq is a �nite �eld (so q may be some power of p).

Proof. The main points of the proof are as follows:

(1) De�ne the measure on F+
using Haar Theorem. We an de�ne absolute value,

up to salar multipliation, that is, there exists α(a) suh that, µa = α(a)µ→ |a| ≡

α(a).

(2) Prove that every loal �eld has a norm that de�nes its topology, whih de�ned

as a salar multipliation of Haar measure.

(3) Prove that every ompat metri spae is omplete.

(4) Every loal �eld of har 0 inludes Q and its ompletion. This means that F

ontains R if it is arhimedean, and Qp if it is non-arhimedean.
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(5) Show that if F is harateristi 0, then F must be a �nite extension of R or Qp,

otherwise (non algebrai extension) it will not be ompat. Show that any suh

�nite extension is indeed a loal �eld.

(6) For char(F ) 6= 0 show that F ontains a transendental element, name it t, and

show that it ontains Fq((t)). Show that F is a �nite extension of Fq((t)). �

4.5. Some basi properties of l-spaes.

De�nition. An l−space X is an Hausdor�, loally ompat an totally disonneted

topologial spae.

Exerise. 1) This de�nition is equivalent to having a basis of open ompat subsets

(and being Hausdor�).

2) Any non-arhimedean loal �eld is an l-spae.

3) Finite produts, and open/losed subsets of an l-spae is an l-spae. Note that

any subset of a totally disonneted topologial spae is totally disonneted.

De�nition. A spae is alled countable at∞ if X = ∪n∈ZKn whereKn is ompat.

Exerise. 1) Find a ompat l-spae X and U ⊆ X suh that U is not ountable

at ∞.

2) Every σ-ompat, S1 l-spae X is homeomorphi to one of the following:

(a) Countable (or �nite) disrete spae.

(b) Cantor set.

() Cantor set minus a point.

d) Disjoint union of b) or c) with a).

De�nition. Refinement of a over ∪Ui = X is a over {Vj} suh that for any j,

we have that Vj ⊆ Ui for some i.

Exerise. 1) Let C ⊆ X be a ompat subset of an l-spae. Then any over has

an open ompat disjoint re�nement.

2) Let X be a ountable at∞ l-spae, then any over has an open ompat disjoint

re�nement.
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Distributions on l-spaes.

De�nition. Let X be an l-spae. A funtion f from X to the �eld will be alled

a smooth funtion if for every point x ∈ X there is an open neighborhood U suh

that the restrition f |U is onstant.

Proposition. Let X be an l-spae. Show that the smooth funtions C∞(X) sep-

arates the points in X. Assuming this exerise, the Stone-Weierstrass theorem

implies that C∞(X) is dense in C(X).

Proof. Let x, y ∈ X . As X is Hausdor� and having a basis of open ompat, .

there exists Ux and Uy ompat and open. Set f(Ux) = 0 and f(X/Ux) = 1. Then

f(x) = 0, and f(y) = 1. �

De�nition. The funtions with ompat support, C∞c (X) ⊂ C∞(X), are alled

Shwartz funtions. We denote them by S(X). We also denoteDist(X) = C∞c (X)∗ =

S(X)∗. We onsider both spaes as vetor spaes without topology.

Exerise. Let X be an l-spae, show that C∞c (X)∗ is a sheaf.

Remark. In Rn, the Shwartz funtions are the funtions whose derivatives derease

faster than every polynomial, and C∞c (Rn) ⊂ S(X) ⊂ C∞(Rn). We will de�ne

them in the next letures.

4.6. Distributions supported on a subspae. Reall that over R, the desrip-

tion of distributions on a spae X that are supported on Z is a little ompliated

(we did that using �ltrations). Distributions on l-spaes behave muh better.

De�nition. Let X be an l-spae, the support of a distribution ξ ∈ S∗(X) is Suppξ

= the smallest losed subset S suh that ξ|X\S = 0.

Proposition. Let i : S∗(Z)→ S∗Z(X) be the map indued by the restrition Res :

S(X) −→ S(Z). Then i is an inlusion.

Proof. We prove it by showing the dual map j : S(X) → S(Z) is onto. Let

f ∈ S(Z). As f is loally onstant and ompatly supported, we may assume that

Z is ompat and has a overing by a �nite number of open sets Uα (open in Z)

with f |Uα
= cα. Notie that eah Uα, is of the form Uα = Wα ∩ Z, where Wα is

open in X . Therefore, Z ⊆ {Wα}, and as Z is ompat, we may re�ne {Wα} and

get that Z ⊆ ∪iVi when Vi open ompat and Vi ∩ Z ⊆ Wα ∩ Z = Uα for some

α. Therefore we an extend f by de�ning f(x) = cα if x ∈ Vi ⊆ Wα and zero

otherwise. �
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Proposition. (Exat Sequene of an Open Subset). Let U ⊆ X be open and set

Z = X \ U . Then 0→ S(U)→ S(X)→ S(Z)→ 0 is exat.

Proof. We showed that S(X)�S(Z) is onto, and it is lear that extension by zero

S(U)�S(X) is injetive. It is left to prove exatness in the middle. Let f ∈ S(X)

suh that f |Z = 0. As f is loally onstant, there is an open set V ⊇ Z suh that

f |V = 0. This implies that f is supported on ZC = U and therefore f |U ∈ S(U). �

Corollary. Let X be an l-spae, and Z ⊂ X a losed subspae. Then:

1) The inlusion i : S∗(Z)→ S∗Z(X) is an isomorphism.

2) There is an exat sequene 0→ S∗(Z)→ S∗(X)→ S∗(X\Z)→ 0.

Remark. Note that over R, the map i is not onto . For example, for Z := {0} ⊂ R,

the derivatives δ
(n)
0 ∈ S∗Z(R

n) but not in the image of i. Moreover, on Rnwe have

an exat sequene:

0→ S∗Z(X)→ S∗(X)→ S∗(X\Z).

Exerise. Let V be a vetor spae (maybe in�nite-dimensional) over a �eld K,

and L ⊂ V a linear subspae. Show that ∀f ∈ L∗ ∃g ∈ V ∗ : g|L ≡ f . Use Zorn's

lemma.

So far we showed two advantages of distributions on l-spaes over distributions on

Rn:

(1) Every distribution ξ supported on some Z ⊂ X is also supported on a

neighborhood of Z.

(2) The map i : S∗(Z)→ S∗Z(X) is onto.

Both these qualities an be ahieved over Rn by swithing from C∞c (Rn) to real-

valued Shwartz funtions. A third advantage is:

Proposition. Let X,Y be l-spaes. Given f1 ∈ S(X), f2 ∈ S(Y ), onsider the

bilinear map φ : S(X)⊗S(Y )→ S(X×Y ) where (φ(f1⊗f2))(x, y) := f1(x) ·f2(y).

Then φ is loally onstant and an isomorphism of vetor spaes.

Proof. The loally onstant property is easy to see by re�nement of the open sets

in X and Y . Surjetivity: let f ∈ S(X × Y ). Then f =
∑
cUi×Vi

and by

re�ning {Ui × Vi} we may assume that they are disjoint. Notie that eah term

cUi×Vi
∈ φ(f1, f2) so we are done.
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Injetivity: Assume that φ(
∑

i f1i ⊗ f2i))(x; y) :=
∑
i f1i(x) · f2i(y) = 0. We an

assume that {f1i} are linearly independent and that {f2i} are non zero and that

the sum is minimal with respet to those demands. If we take some y suh that

f21(y) 6= 0 we get that for any x ∈ X ,

∑
i f1i(x) · f2i(y) = 0. This implies that

f1i(x) are linearly dependent. Contradition. Hene f2i ≡ 0 and hene f1i⊗f2i ≡ 0

and ontradition to the minimality of the summation. �

5. Leture 5- Distribution with values on a vetor spae

De�nition. Let F be a loal �eld. V a vetor spae over F . We an de�ne

C∞c (X,V ) to be the spae of smooth funtions with ompat support from X to

V , with the same onvergene ondition as in the usual V = F ase. Here the

smoothness of a funtion is the usual oordinate-wise one.

Exerise. Prove that C∞c (X,V ) ∼= C∞c (X)⊗F V as topologial vetor-spaes, the

topology on C∞c (X)⊗F V is given by hoosing a basis to identify V with Fn and

then take the produt topology on C∞c (X)⊗F F
n ∼=can (C∞c (X))n. In partiular,

this topology is independent on a hoie of a basis.

5.1. Smooth measures. Ameasure has 2 equivalent de�nitions: A σ additive map

from the σ-algebra of Borel subsets of X into R. For us, the following de�nition is

better:

De�nition: Let X be a loally ompat topologial spae. The spae of signed

measures onX is Cc(X)∗, i.e. a ontinuous funtional on C∞c (X). A signed measure

is a measure if it is non-negative on non-negative funtion.

As the spae Cc(X) is larger than C∞c (X), its dual is smaller. Spei�ally Cc(X)∗ ⊆

C∞c (X)∗, the inlusion is the dual of the obvious ontinuous map C∞c (X) →֒ Cc(X).

Inside Cc(X)∗ there is a one dimensional spae of Haar measures, whih in this ase

is just the spae of multiples of the Lebesgue measure.

De�nition: Let V be a loally ompat f.d vetor spae (If it is not �nite dimen-

sional then it an't be loally ompat). The spae of Haar measures on V , denoted

hV ⊆ Cc(V )∗, is the spae of translation invariant measures.

The fat that this spae is one dimensional is non-trivial, but the intuition is as

follows: A Borel measure onX is determined by its value on ubes with sides parallel

to the axes planes of rational side length, as they form basis of the topology. It is

not hard to see that if the measure is translation invariant, the measures of these

ubes are determined by the measure of the unit ube.
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Exerise. Let ξ ∈ C∞c (X)∗ whih is translation invariant. Prove that ξ is a Haar

measure. Note that C∞c (X)∗ ! Cc(X)∗so there might be other translation invariant

funtionals other then the Haar measure.

De�nition. A measure µ on V is alled a smooth measure if µ ∈ C∞(V )hV , i.e.

µ = f(x)h where f is smooth and h is a Haar measure. We denote this spae

by µ∞c (V ). Note that by de�nition, µ∞c (V ) ≃can C∞c (V, hV ) ≃ C∞c (V ) ⊗ hV

anonially, and also µ∞c (V ) ≃ C∞c (V ) by hoosing some Haar measure, but this

isomorphism is not anonial.

5.2. Generalized Funtions Versus Distributions. We are now in position to

understand the di�erene between generalized funtions and distributions.

A distribution on V is ontinuous funtional on the spae of smooth funtions with

ompat support:

Dist(V ) := C∞c (V )∗

.A generalized funtion is a ontinuous funtional on the spae of smooth measures

with ompat support on V , i.e.

C−∞(V ) := C∞c (V, hV )
∗.

As funtions an be integrated against smooth measures, thus we have a pairing

C∞c (V, hV )× C
∞
c (V )

<,>
→ F . Though we have the following piture:

C−∞c (V )
≃
⇐⇒ Dist(V )

j ↑ i ↑

C∞c (V )
≃
⇐⇒ µ∞c (V )

And the diagonals are dual to eah other. The inlusion i : µ∞c (V ) →֒ Dist(V ) is via

the pairing C∞c (V, hV ) × C
∞
c (V )

<,>
→ F , and the inlusion j : C∞c (V ) →֒ C−∞c (V )

is de�ned by f 7−→ ϕf where ϕf (µ) =
´

fdµ for a smooth measure µ.

Exerise. hV ≃ Dist(V )V or equivalently Dist(V )V is one dimensional, for any

�nite dimensional vetor spae V over a loal �eld F .

De�nition. We an also de�ne generalized funtions with value in a vetor spae,

by either:

1) C−∞(V,E) := C−∞(V )⊗ E

2) C−∞(V,E) := C∞c (V, hV ⊗ E
∗)∗

and then C−∞(V, hV ) := C−∞(V )⊗ hV = C∞c (V )∗ = Dist(V ).
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Exerise. 1) Show that the two de�nition for C−∞(V,E) are equivalent.

2) De�ne an embedding C∞c (V,E) →֒ C−∞(V,E).

5.3. Some linear algebra. Let V be an n dimensional vetor spae over a loal

�eld F . Let Ωtop(V ) be the spae of anti-symmetri n-forms on V . It is a one-

dimensional spae, and Ωtop(V ) =
∧n

(V ∗).

Exerise. Let B be the spae of bases of V . Show that Ωtop(V ) = {f : B → F :

f(B1) = det(MB2

B1
)f(B2)} and also that Ωtop(V ) = {f : V n�F : f(Av1, ..., Avn) =

det(A)f(v1, ..., vn)}.

De�nition. If V is over R, then we have two related spaes, the spae of densities

and the spae of orientations:

Dens(V ) = {f : B −→ R : f(B1) =
∣∣∣det(MB2

B1
)
∣∣∣ f(B2)}

And

Ori(V ) = {f : B −→ R : f(B1) = sign(det(MB2

B1
)) · f(B2)}

Exerise. Ωtop(V ) = Dens(V ) ⊗ Ori(V ), via the tensor produt of the natural

maps Ωtop(V )→ Dens(V ) and Ωn(V ) −→ Ori(V ).

Note that this spae of orientation is a linear spae and not two points as one expet

from orientation. On the other hand, we have two distinguished points in Ori(V ),

the two funtions with absolute value 1. These are the usual orientations we used

to think of.

Exerise. Dens(V ) ≃can hV .

De�nition. Let F be a loal �eld with absolute value | |. We an de�ne a funtor

| |on V from one dimensional vetor spaes over F to one dimensional vetor spaes

over R, by

|V | := {f : V ∗ −→ R|f(αv) = |α| f(v)}

Exerise. 1) |L⊗M | = |L| ⊗ |M |.

2) |Ωtop(V )| ≃ Dens(V ).

3) If W ⊆ V then hW ⊗ hV/W ∼=can hV .

4) W ⊆ V , Ωtop(V ) ≃ Ωtop(W )⊗ Ωtop(V/W )

5) If F = R, then Ori(V ) = Ori(W ) ⊗Ori(V/W ).
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5.4. Generalized Funtions With Support on a Subspae. Let W ⊆ V be

a linear spaes. We showed that over a non arhimedean �eld F , DistW (V ) =

Dist(W ), and for F = R we have desribed the ase of V = Rn and W = Rk. The

goal now is to desribe the distributions on V supported on W for any W ⊆ V

linear spaes over R. Reall that inside Dist(V ), there is a subspae DistW (V ) of

distributions supported on W . We have de�ned a �ltration F iW (V ) on C∞c (V ) by

F iW (V ) = {f ∈ C∞c (V ) : Df |W = 0, |D| ≤ i}

and we have de�ned Fi,W (V ) ⊆ DistW (V ) by

Fi(V )W =
(
C∞c (V )/F iW (V )

)∗
:= {ξ ∈ Dist(V )|〈ξ, f〉 = 0 for any f ∈ F iW (V )}

We denote Fi(V )W = F iW (V )⊥ where Y ⊥ := (X/Y )
∗
. We want to desribe

Fi(V )W /Fi−1(V )W in anonial terms, i.e. in a way invariant under di�eomor-

phisms preserving W .

Theorem. We have a (V,W )-di�eomorphism preserving isormophism of vetor

spaes:

Fi(V )W /Fi−1(V )W ∼=can C
∞
c (W,Symi(W⊥))∗ ≃ Dist(W )⊗ Symi(V/W ).

Observe that Symi(W⊥) = SymPoly(V/W, ..., V/W ;R) = {f : V i −→ R|f |W×V×...×V =

0}. The theorem is based on the following lemma:

Lemma. Fi(V )W /Fi−1(V )W ∼= (F i−1W (V )/F iW (V ))∗.

Proof. For φ ∈ Fi(V )W , φ|F i−1

W
(V ) vanish on F iW (V ), and we send it to the indued

funtional on F i−1W (V )/F iW (V ), denoted φ̃. This is an injetive morphism, as if

φ̃ = 0 then φ|F i−1

W
(V ) = 0 so φ ∈ Fi−1(V )W . surjetivity follows from Hahn-Banah

theorem in the following way: any ϕ ∈ (F i−1W (V )/F iW (V ))∗ an be extended to

ϕ̃ ∈
(
C∞c (V )/F iW (V )

)∗
= Fi(V )W . Therefore [ϕ̃] + Fi−1(V )W 7−→ ϕ. �

Hene, in order to prove the theorem it will be su�ient to prove that F i−1W (V )/F iW (V ) ∼=

C∞c (W,Symi(W⊥)). For this we will do the natural thing- attah to f its i-th

derivatives. Expliitly, we de�ne:

Φ(f)(w)(v1, ..., vi) = ∂v1 ...∂vif(w).

It is well de�ned as f vanish identially on W , so this form kills all the tangential

derivatives. It is one-to-one as if Φ(f) = 0, then f vanish with all of its derivatives

up to degree i so it is in F iW (V ).
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Exerise. 1) prove that Φ is onto, hene an isomorphism.

2) Show that the isomorphism Fi(V )W /Fi−1(V )W ∼=can C∞c (W,Symi(W⊥))∗ is

invariant with respet to di�eomorphism of (V,W ).

3) Find ξ ∈ Dist(V −W ) s.t there is no η ∈ Dist(V ) suh that η|V−W = ξ. That

is, the natural map Dist(V ) −→ Dist(V −W ) is not onto.

For the generalized-funtions ase, we get the same result by twisting with Haar

measures. Indeed,

Fi(V )W /Fi−1(V )W ∼= C∞c (W,Symi(W⊥))∗ = C−∞(W,Symi(W⊥)⊗ hW )

. Take Gi(V )W = Gi(V )W ⊗h
∗
V ⊆ C

−∞(V ). We get, by the ompatibility of tensor

and quotient,

Gi(V )W /Gi−1(V )W ∼= C−∞(W,Symi(W⊥)⊗hW )⊗h∗V
∼= C−∞(W,Symi(W⊥)⊗hW⊗h

∗
V )

But what is this (one dimensional) spae hW ⊗ h
∗
V ?

Exerise. If W ⊆ V , then:

1) hW ⊗ hV/W ∼=can hV .

2) h∗V = hV ∗
.

From the exerise it follows that

hW ⊗ h
∗
V = (h∗W ⊗ hV )

∗ = (h∗W ⊗ hW ⊗ hV/W )∗ = h∗V/W = h∗(W⊥)∗ = hW⊥ .

Corollary. By the above argument it follows that:

Gi(V )W /Gi−1(V )W ∼= C−∞(W,Symi(W⊥)⊗ hW⊥).

6. Leture 6- Manifolds

De�nition. 1) Let X be a topologial spae. A over {Ui} is alled locally finite,

if for any x ∈ X there is a neighborhood V suh that V intersets only �nite number

of sets in the over.

2) A topologial spae X is alled paracompact, if any open over has a re�nement

that is loally �nite.

3) A toplologicalmanifold is a topologial spae X that is loally homeomorphi

to Rn, Hausdor� and paraompat.
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Exerise. 1) Find a spae X whih is loally homeomorphi to Rn at every point

and is paraompat but is not Hausdor�.

2) Find a spae whih is Hausdor�, loally isomorphi to Rn but is not para-

ompat.

We will now give a de�nition for (smooth) manifolds that is di�erent then the usual

de�nition in di�erential topology. We will use the following more general de�nition

of sheaves of funtions:

De�nition. A sheaf of (K-valued) funtions F on a topologial spae X is an as-

signment U 7−→ F(U) ⊆ {f : U −→ K| f is ontinuous} suh that:

1) F(U) is an algebra with unity.

2) ResUVF(U) ⊆ F(V ) is the usual restrition f 7−→ f |U .

3) For every open over U =
⋃
i∈I

Ui, if there exists a set of funtions {fi} ∈ F(Ui) s.t.

: fi|(Ui∩Uj) ≡ fj|(Ui∩Uj) for any i, j ∈ I then there exists f ∈ F(U) s.t. f |Ui
≡ fi

for any i ∈ I.

A sheaf of funtions on X will be denoted by a pair (X,F)

Remark. Note that the seond demand implies the identity axiom.

Example. Funtion sheaves an be �ontinuous funtions onX�, �smooth funtions

on X�.

De�nition. 1) Let (X,F), (Y,G) be sheaves of funtions. Then a morphism ϕ :

(X,F) −→ (Y,G) is a map ϕ : X −→ Y suh that ∀g ∈ G(U) we have that

g ◦ ϕ|ϕ−1(U) ∈ F(ϕ
−1(U)). In other words, a map ϕ# : G −→ ϕ∗F .

2) A smooth manifold is a spae with funtions (X,C∞(X)), where X is a topolog-

ial manifold and for every point x ∈ X there is a open neighborhood U suh that

(U,C∞(X)|U ) ≃ (Rn, C∞(Rn)) as sheaves of funtions, that is maps ϕ : U −→ Rn,

ϕ# : (Rn, C∞(Rn)) −→ ϕ∗C
∞(X)|U and ψ : Rn −→ U , ψ# : C∞(X)|U −→

ψ∗C
∞(Rn)) suh that ϕ = ψ−1 and (ψ ◦ ϕ)

#
= IdC∞(X)|U , (ϕ ◦ ψ)

#
= IdC∞(Rn).

Remark. The usual de�nition of manifolds adds an "atlas" to the struture of

X : an open over X =
⋃
i∈I

Ui with di�eomorphism φi : Ui → Rn. But we also

demand thatφi◦φ
−1
j is di�erentiable, so it looks like an �extra� demand with respet

to the de�nition above. If we look losely, we see that a pair of isomorphisms
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ϕi : (Ui, C
∞(Ui)) −→ (Rn, C∞(Rn)), and ϕj : (Uj , C

∞(Uj)) −→ (Rn, C∞(Rn))

implies that

(
ϕi ◦ ϕ

−1
j |Ui∩Uj

)#
: (Rn, C∞(Rn))|ϕj(Ui∩Uj) −→

(
ϕi ◦ ϕ

−1
j

)
∗
(Rn, C∞(Rn))|ϕi(Ui∩Uj)

is an isomorphism. In partiular, by the following exerise, we an dedue that

ϕi ◦ ϕ
−1
j |Ui∩Uj

is smooth and atually a di�eomorphism. Therefore the 2 above

de�nitions for smooth manifolds are equivalent.

Exerise. 1) Show that C∞(Rn;Rk) = {f : Rn −→ Rk : f∗(µ) ∈ C∞(Rn)∀µ ∈

C∞(Rk)}.

2) A map f :M −→ N is a smooth map of manifolds i� it is a morphism of ringed

spaes (sheaves of smooth funtions).

A theorem by Whitney shows that every n-dimensional manifold an be embedded

in R2n+1
.

6.1. Tangent spae of a manifold. There are several �equivalent de�nition� for a

tangent spae of a smooth manifoldM at a point x ∈M . We will give a ategorial

de�nition and then we will give several proofs of existene that they will all be

equivalent.

De�nition. A tangent spae of a smooth manifoldM at a point x ∈M is a funtor

Tan : (M,x) 7−→ TxM from pointed smooth manifolds to vetor spaes satisfy the

following onditions:

1) (V, 0) 7−→ V .

2) If f1, f2 : (M,x) −→ R satisfy that (f1 − f2) (y) = o(‖x− y‖) for any norm ‖ ‖

on a manifold, then Tan(f1) = Tan(f2).

3) If U →֒M is an open embedding, then Tan((U, x) →֒ (M,x)) is an isomorphism.

There are several strutures that satisfy the above onditions:

(1) Tx(M) := {γ : ((−1, 1), 0)→ (M,x)} modulo the relation γ1 ∼ γ2 i� exists

a neighborhood U of x and a isomorphism φ : U → Rn s.t. (φ ◦ γ1)
′(x) −

(φ ◦ γ2)
′(x). It is easy to hek that this de�nition doesn't depend on the

hoie of (φ, U)

(2) Tx(M) = {d : C∞(M) → R| d is linear, d(f · g) = df · g(x) + f(x) · dg}.

This is the spae of derivations.

(3) De�ne mx := {f ∈ C∞(M) | f(x) = 0}, and take Tx(M) := (mx/m
2
x)
∗
.
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Exerise. Show the de�nitions are equivalent.

De�nition. Now let φ : M → N be smooth. The di�erential of φ in x ∈ M is a

linear map dxφ : Tx(M)→ Tφ(x)(N) that dx(φ)(γ) := φ ◦ γ.

Exerise. Show that given manifolds M,N,K and maps φ : M → N,ψ : N →

K, ν = ψ ◦ φ :M → K, the di�erentials satisfy dx(ν) ≡ dφ(x)(ψ) ◦ dx(φ).

6.2. Type of maps of smooth manifolds.

De�nition. Let φ :M → N be a smooth map between manifolds.

*φ is an immersion if dxφ is one-to-one.

* φ is a submersion if dxφ is onto.

* φ is a loal isomorphism or étale if dxφ is one-to-one and onto.

* φ is an embedding if it's an immersion and there is a homeomorphismM ∼= φ(M).

* φ is a proper map if for every ompat K, the preimage φ−1(K) is ompat. In

partiular, �bers are ompat in M .

* φ is a over map if for x ∈ N there exists a neighborhood U ⊆ M , suh that

φ|φ−1(U) : φ−1(U) → U is a di�eomorphism, and is a omposition φ−1(U) →

U ×D → U for a disrete set D.

Example. 1) Let φ : [−1, 1] → R2
be a smooth path that slows to a stop in

φ(0) = (0, 0), but spends no time in (0, 0). That is, all the derivatives are zeroed

φ(n)(0) = 0, but φ(x) 6= 0 for all x in some neighborhood [−ǫ, ǫ]. Suh a φ is

one-to-one around 0, but is not an immersion at 0.

2) An immersion isn't neessarily one-to-one. An example is a self-interseting path

φ : R→ R2
with onstant speed.

3) Let L,D be �nite dimensional linear spaes. The di�erential of a map φ ∈

Hom(L, V ) is φ itself. Thus, a one-to-one φ will be an immersion, an onto φ will

be a submersion, and an isomorphism of linear spae will be an étale.

Exerise. 1) Find a φ : M → N whih is a one-to-one immersion, but isn't an

embedding.

2) Show that every proper map whih a one-to-one immersion is a losed embedding.

3) Show that a proper map whih is an étale is a over map, and that a over map

with �nite �bers is proper and étale.
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De�nition. A fibration is a map X
p
−→ Y , where loally p−1(U) ≃ U × Z for

U ⊆ Y and some topologial vetor spae Z.

Exerise. A proper submersion is a �bration.

De�nition. Given a submanifoldX ⊆M , and an embedding i : X →M , we de�ne

the normal bundle at a point x ∈ M to be Nx(M) := i∗(TM)/TX . Similarly, the

onormal bundle is CNx(M) := (Nx(M))∗.

Example. For M = S2
the normal bundle at a point will give the normal vetor

to it. It will be isomorphi to the trivial bundle on M .

6.3. Analyti manifolds and Vetor bundles. We would like to introdue to

more important strutures: an analyti F - manifold (for any loal �eld F ) and a

real vetor bundle.

De�nition. 1) An analyti F -manifold is a spae M whih is loally isomorphi

to Fn together with a sheaf of funtions

An(U) = {f : U → F : ∀x ∈ U, ∃r > 0 s.t. f|Br(x)(y) =
∑

~k∈Nn

a~k(x− y)
~k},

where Br(x) is the ball of radius r around x, and ~k is a multi-index, thus (x−y)
~k =

n∏
i=0

(xi − yi)
ki
.

2) A smooth analyticmanifold is a ringed spae (of funtions) (X,F) loally iso-

morphi to (Fn, An).

Remark. We don't have partition of unity in analyti manifolds. If an analyti

funtion zeroes in some neighborhood, it must be the zero funtion.

Example. There exists singular analyti manifolds, and in partiular any singular

a�ne algebrai variety.

De�nition. Let M be a smooth manifold or a p-adi analyti manifold. A real

vetor bundle overM is a tuple (E, p) where E is a topologial spae and p : E →M

is a ontinuous surjetion suh that:

1) For every x ∈M we have a struture of a �nite dimensional real vetor spae on

p−1(x) = Vx .

2) For every x ∈ M there exists an open x ∈ U and a loal trivialization ϕU :

Vx×U → p−1(U) where ϕU is a homeomorphism (or di�eomorphism if M is a real

smooth manifold) and p ◦ ϕU (v, x) = x for all v ∈ Vx.



GENERELIZED FUNCTIONS LECTURES 42

3) The maps v 7→ ϕU (v, x) are linear isomorphisms.

If E ≃ V ×M we say (E, p) is a trivial bundle over M .

Example. 1) (exerise) TheMobius strip is homeomorphi to I×S1
. By extending

eah segment I to R, we an de�ne a bundle over the manifold S1
. This way, the

points in E are pairs (θ, x), where x runs over the points of the line of angle 0.5 · θ.

De�ne the vetor bundle above rigorously and show it is not di�eomorphi to the

bundle S1 × R. You an assume the Mobius strip isn't di�eomorphi to the S1
.

2) The tangent bundle ofM = S1
is TS1 ≃ S1×R. The tangent spae at any point

is one-dimensional, and hanges smoothly as we "walk" on the irle. However, on

M = S2
the tangent bundle will not be isomorphi to S2 × R2

. This holds sine

every vetor �eld on S2
vanishes ("you an't omb a hedgehog").

De�nition. Let (M,E) be a vetor bundle. Given neighborhoods U, V , onsider

ϕ−1V ◦ϕU : (U∩V )×Rk −→ (U∩V )×Rk. We an write ϕ−1V ◦ϕU (x, v) = (x, gUV (v))

where gUV ∈ GL(R
k). The maps gUV are alled transition functions.

Notie that the set of transition funtions gUV , satisfy the oyle onditions

gUU (x) = Id, gUV (x)gVW (x) = gUW (x). Conversely, given a �ber bundle (E,X, π,Rk)

with a GL(Rk) oyle ating in the standard way on the �ber Rk, there is assoi-

ated a vetor bundle. This is sometimes taken as the de�nition of a vetor bundle.

De�nition. Let E1, E2 be two vetor bundles over M . The diret sum E1 ⊕E2 is

de�ned as follows:

Given a bundle π1 : E1 −→M and π2 : E1 −→M , and a olletion of trivializations

φ1i : π
−1
1 (Ui) −→ Ui × Rk, φ2i : π

−1
2 (Vi) −→ Vi × Rk, by re�ning the overs we may

assume that Vi = Ui. Now de�ne E1 ⊕ E2 :=
⊔
m∈M E1,m ⊕ E2,m as a set where

Ei,m = π−1i (m). The map π : E1⊕E2 −→M is de�ned by the anonial projetion.

We de�ne the topology on E1⊕E2 by the trivializations ψi : π
−1(Ui) −→ Ui×R2k

by ψi(m, (v, w)) = (m,φ1i (m, v), φ
2
i (m,u)). It is easily seen that the transition

funtions ψj ◦ ψ
−1
i : Ui ∩ Uj × R2k −→ Ui ∩ Uj × R2k

satisfy

ψj ◦ ψ
−1
i (m, (v, u)) = (m,φ1j

(
φ1i
)−1

(m, v), φ2j
(
φ2i
)−1

(m,u))

and as φ1 and φ2 satisfy the oyle onditions, so does ψ. This de�nes a struture

of a vetor bundle.

Exerise. Find non-isomorphi bundles E,E′, suh that E⊕F ∼= E′⊕F for some

bundle F (Hint: use vetor bundles over S2
).
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Similarly, we an de�ne tensor produts of bundles, multilinear n-forms, and their

absolute value and sign.

Exerise. 1) Let Φ : V ectn −→ V ectm be a �smooth� funtor, i.e, Φ(T ),T ∈

Hom(V,W ) ≃ Rn
2

is a smooth map from Rn
2

to Rm
2

. De�ne funtor Φ̃ : V ecBun(M)n −→

V ecBun(M)m.

2) For vetor bundles E1, E2, de�ne the following notions: ( you an, and advised

to, use part 1)

(a) E∗1 .

(b) E1 ⊕ E2.

() E1 ⊗ E2.

(d) For an embedding ϕ : E1 →֒ E2, de�ne E2/E1.

(e)

∧k(E1), Sym
k(E1).

(f) In the real/omplex ase, de�ne Dens(E1).

De�nition. 1) Let M be a smooth manifold, we an de�ne its density bundle by

DM = |Ωtop(TM)|, that is the density bundle of the tangent bundle.

2) Let X be an F analyti manifold, we de�ne its density bundle by DX =

|Ωtop(TX)|.

6.4. setions of a bundle. A set theoreti section of a funtion f : X → Y is

a funtion g : Y → X s.t. g ◦ f ≡ id. For example, for f : R2 → R whih is

the projetion f(x, y) := x a setion an be g(x) := (x, sinx). This a just be a

(ontinuous) hoie of representatives of �bers.

In our ase, setions of bundles an help us de�ne many basi onepts. For exam-

ple:

• A setion of the tangent bundle is a vector field.

• A setion of kth exterior power of the otangent bundle is a differential form

of degree k.

• A setion of the density bundle is alled a density.

• A setion of the orientations bundle is an orientation on a manifold.
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Exerise. 1) Show the every manifold has a Riemannian metri, i.e , an inner

produt on tangent spaes

<,>p: TpM × TpM → R

whih varies smoothly.

2) Let M be a smooth n-dimensional Riemannian manifold, that is a smooth real

manifold with a Riemannian metri. Construt expliitly a density over M , that

is a smooth setion of the density bundle over M . The density should respet

oordinate hanges, and be the standard density whenM is a linear spae with the

standard inner produt.

Remark. We don't always have top di�erential forms on a manifold, and the Mobius

strip is a ounter-example. However, we an always de�ne densities.

Sine a density over a spae gives us a measure on it, we an thus de�ne integrals

over manifolds.

6.5. Equivalent desription of vetor bundles.

De�nition. Let V be a �nite dimensional vetor spae and X a topologial spae.

We de�ne the constant sheaf V X to be the shea��ation of the onstant presheaf,

whih assigns to every open set in X the vetor spae V . We say that a sheaf F

over X is locally constant if for every x ∈ X there exists an open x ∈ Ux and a

�nite dimensional vetor spae Vx suh that F|Ux
≃ VxUx

.

Exerise. 1) Let V be a �nite dimensional vetor spae and X a topologial spae.

Show that V X(U) onsists of the loally onstant funtions from U to V .

2) Show that if X is a σ-ompat ℓ-spae then every loally onstant sheaf F where

Fx ≃ Fy for all x, y ∈ X is isomorphi to the onstant sheaf.

De�nition. Leray sheaf on X is a loal homeomorphism p : E −→ X .

Theorem. The de�nition of a Leray sheaf is equivalent to the Grothendiek de�-

nition of a sheaf.

Proof. Given a Leray sheaf p we de�ne a Grothendiek sheaf F(U) := {ontinuous setions U −→

p−1(U)}. For the other diretion, given a Grothendiek sheaf F , we de�ne E =⊔
x∈X Fx with the natural projetion map p : E −→ X . We de�ne a basis for

the topology of E by Us,V = {(x, (s)x) : x ∈ V } where V ⊆ X is open and

s ∈ F(V ). �
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Exerise. 1) Complete the proof by showing that those funtors indue an equiv-

alene of ategories.

2) Show that overing spaes orrespond to loally onstant sheaves, and that a

overing spae is trivial exatly when it orresponds to a onstant sheaf.

3) Give an example for a loally onstant sheaf arising from a overing spae whih

is not onstant.

7. Distribution on analyti/smooth manifolds

De�nition. Let E be an F -analyti one dimensional vetor bundle over an F -

analyti manifold X . De�ne a real vetor bundle |E| as follows. As a set de�ne

|E| := {(x, v)|x ∈ X, v ∈ |Ex|} and de�ne a topology by giving C the disrete

topology, so loally E|U ≃ U × F and |E| |U ≃ U × |F | ≃ U ×C. Hene, a base for

the topology is Vi,U,α = ϕi(U × {α}) where ϕi : U × C −→ |E| |U and α ∈ C.

Remark. Note that p̃ : |E| −→ X is a loal homeomorphism as Vi,U,α ≃ U as a

topologial spae. Hene p̃ is a Leray sheaf. Its orresponding Grothendiek sheaf

is F(U) := {ontinuous setions U −→ p̃−1(U)}. This is a loally onstant sheaf

CXover X .

De�nition. We an now de�ne density bundle over an F -analyti manifold X in

two ways:

Def 1 (Leray): DX := |Ωtop(X)|.

Def 2 (Grothendiek):

DX(U) := {µ ∈Mesures(U)|∀ϕ ∈ OnF −→ U, there exists f ∈ C∞(OnF ) suh that µ = ϕ∗(f ·Haar)}

Lemma. Let ϕ : Fn −→ Fn be analyti di�eomorphism and f ∈ Cc(F
n). Then

hFn(f) =:
´

fdx =
´

(f ◦ ϕ)dx · |det(Dxϕ)|.

Exerise. Show that the above de�nitions are equivalent.

7.1. Smooth setions of a vetor bundle. In this subsetion we assume that

F = R and we are dealing with smooth manifolds.

De�nition. We de�ne

C∞c (M,E) := {f :M −→ E suh that π◦f = IdM and ∃K ompat suh that f |KC (m) = (m, 0)}
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Reall that C∞c (Rn,Rk) = lim−→C
∞
Km

(Rn,Rk) where Km is an inreasing sequene of

ompat sets. We will now de�ne a topology on C∞c (M,E) using the topology on

C∞c (Rn,Rk):

Case 1- The trivial ase: M ≃ Rn and E ≃ Rn × Rk −→ Rn. Note that

ontinuous setions from Rn to Rn × Rk just means a funtion in C∞c (Rn,Rk).

Hene we give C∞c (M,E) the topology of C∞c (Rn,Rk).

Exerise. Show that the above de�nition is well de�ned, i.e, doesn't depend on

the isomorphism M ≃ Rn and E ≃ Rn × Rk −→ Rn. In other words, show that:

(a) Given a di�eomorphism ϕ : Rn −→ Rn then it indues a homeomorphism

ϕ∗ : C∞c (Rn;Rn × Rk) −→ C∞c (Rn;Rn × Rk).

(b) Given a smooth map ψ ∈ C∞(Rn;GLk(R)) we have that ψ∗ : C∞c (Rn;Rn ×

Rk) −→ C∞c (Rn;Rn × Rk) is a homeomorphism.

Case 2- General ase: We an hoose small enough {Ui} suh that M = ∪Ui

where ϕi : Ui
≃
−→ Rn and also ψi : E|Ui

≃
−→ Rn × Rk (an isomorphism of vetor

bundles). We have a surjetive map

ϕ :
⊕

i∈I

C∞c (Ui, E|Ui
) ։ C∞c (M,E)

by summation (surjetivity follows from partition of unity). Hene we an de�ne a

quotient topology aording to the map ϕ, that is, we de�ne a set U ⊆ C∞c (M,E)

to be open if ϕ−1(U) is open in

⊕
i∈I C

∞
c (Ui, E|Ui

) (with the diret sum topology).

Exerise. Prove that this �de�nition� is well de�ned, i.e, show that that the de�ni-

tion doesn't depend on the over Ui. Redue to showing that
⊕

i∈I C
∞
c (Ui,R

k) −→

C∞c (Rn,Rk) is open. The full proof for this exerise is at �Tirgul 6�.

Now we will give a di�erent desription for the topology of C∞c (Rn). At �rst observe

that f ∈ C∞c (Rn) i� for any g ∈ C∞(Rn), gf is bounded. Now let D ∈ Diff(Rn)-

di�erential operators on C∞c (Rn). De�ne a seminorm ‖f‖D by sup |D(f)|. We

get that C∞c (Rn) is an inverse limit of Banah spaes BD where eah BD is the

ompletion of C∞c (Rn) with respet to ‖ ‖D.(Verify with Rami).

De�nition. Diff(M) is an operator on C∞(M) −→ C∞(M) suh that for any

(or some) over ∪Ui = M suh that ϕi : Ui −→ Rn we have that ϕ−1i ◦D ◦ ϕi ∈

Diff(Rn).
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Now we would like to de�ne Diff(C∞(M,E), C∞(M,E′)). Again we divide it into

ases:

Case 1-E,E′ is trivial: E ≃M×Rk and E′ ≃M×Rk
′

. ThenDiff(C∞(M,E), C∞(M,E′)) ≃

Diff(C∞(M)k, C∞(M)k
′

) and this is isomorphi (as vetor spaes) to k × k′ ma-

tries with values in Diff(C∞(M)).

Exerise. Show that the de�nition of di�erential operatorD ∈ Diff(C∞(M,E), C∞(M,E′))

for E ≃M × Rk and E′ ≃M × Rk
′

doesn't depend on the isomorphisms.

Case 2- the general ase: Let A ∈ Hom(C∞(M,E), C∞(M,E′)). Then we say

that A ∈ Diff(C∞(M,E), C∞(M,E′)) i�:

* For any f1,2 ∈ C
∞(M,E) suh that f1|U = f2|U , then Af1|U = Af2|U .

* If E′|U is trivializable then A|U ∈ Diff(U,E|U , E
′|U ).

De�nition. Seond de�nition for the topology on C∞c (M,E): For any D ∈

Diff(C∞(M,E), C∞(M,E)) de�ne ‖f‖D = sup |D(f)| (hoose some norm on E).

De�ne the topology on C∞c (M,E) as

C∞c (M,E) = lim←−D(C
∞
c (M,E), ‖f‖D).

Exerise. Given a manifold M and a vetor bundle E over it show that the two

de�nitions of the topology on C∞c (M ;E) are equivalent (one de�ned via taking a

over of M and trivialization of E and the other through di�erential operators).

8. Distributions over geometri objets

De�nition. 1) We de�ne distributions on smooth setions by Dist(M,E) :=

C∞c (M,E)∗.

2) We de�ne generalized setions on a smooth vetor bundle by C−∞(M,E) =

Dist(M,E∗ ⊗DM ), where DM is the density bundle.

We don't have a natural injetion from C∞c (M,E) to C∞c (M,E)∗ but we do have

a natural injetion i : C∞c (M,E) →֒ C−∞(M,E) as follows: Let µ ∈ C∞c (M,E∗ ⊗

DM ) and f ∈ C∞c (M,E). Note that f ⊗ µ ∈ C∞c (M,E∗ ⊗ E ⊗ DM ) (that is,

f ⊗ µ(m) = f(m)⊗ µ(m)). Note that we have a natural map q : C∞c (M,E∗ ⊗E ⊗

DM ) −→ C∞c (M,DM ) and a natural map

´

: C∞c (M,DM ) −→ C by integrating

onM aording to the measure de�ned by the setion of the density bundle. Hene

〈i(f), µ〉 =
´

M
q(f ⊗ µ). Therefore, the de�nition of generalized setions indeed

generalizes smooth setions.
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Exerise. Let M,N be either smooth or an F -analyti manifolds and let X,Y be

l-spaes. Show that:

1) C∞c (M)
w
= C−∞(M).

2) C∞c (M)⊗C∞c (N) = C∞c (M)×C∞c (N) and C∞c (X)⊗C∞c (Y ) = C∞c (X)×C∞c (Y )

3) Find an example suh that C∞c (X)∗ ⊗ C∞c (Y )∗ ≇ C∞c (X × Y )∗.The same for

(smooth/analyti) manifolds (Hint: onsider X = Y = Z.)

4) Let E1,2 be omplex vetor bundles over M1,2, then C
∞
c (M1 ×M2, E1 ⊠ E2) =

C∞c (M1, E1)⊗C C
∞
c (M2, E2).

De�nition. Let X be an l-spae and F a sheaf over X . De�ne Fc(X) to be

the spae of ompatly supported global setions of F , that is, s ∈ F(X) suh that

s|KC = 0 outside some ompat K. De�ne C∞c (X,F) := Fc(X).

Theorem. Let i : Z →֒ X be l-spaes. Then:

1) Dist(X,F)|Z ≃ Dist(Z,F|Z) = i∗(F).

2) We have:

0 −→ Dist(Z,F|Z) −→ Dist(X,F) −→ Dist(U,F|U ) −→ 0.

We now want to prove the following important theorem:

Theorem. Let N ⊆M a losed (real) submanifold and E a bundle over M . Then

there is a anonial �ltration Fi ⊆ DistN(M,E) (supported on N ) suh that:

i) Fi is loally exhaustive, i.e,

⋃
Fi is loally DistN (M,E).

ii) Fi/Fi−1 ≃ Dist(N,E|N ⊗ Sym
i(CNM

N )).

In order to prove the theorem, we would like to de�ne the notion of �vanishing of

kth derivative of a smooth setion f ∈ C∞c (M,E)�. The only problem is that the

notion of kth derivative depend on the hart de�ned onM so it is not well de�ned.

Fortunately, the notion of �vanishing kth derivative� is well de�ned as the following

exerise shows:

Exerise. Let f ∈ C∞(Rn,C) with f (i)(0) = 0 for every |i| < k, and ϕ : Rn −→ Rn

a di�eomorphism suh that ϕ(0) = 0. Furthermore let g ∈ C∞(Rn,C×) be a smooth

funtion, and set f̃(x) = f ◦ ϕ−1(x)g(x).
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(a) Show that:

(
∂k

∂v1...∂vk
f̃

)
(0) =

(
∂k

∂ ((Dϕ)v1) ...∂ ((Dϕ)vk)
f

)
(0)g(0)

(b) Part (a) might not be true if f (i)(0) 6= 0 for some |i| < k.

As a onsequene of this exerise, given any f ∈ C∞c (M,E) suh that f vanishes

with k − 1 derivatives, we an de�ne Dk
xf : TxM × ...TxM −→ Ex by

Dk
xf(ξ1,i, ..., ξk,i) =

(
∂k

∂ξ1,i...∂ξk,i
(f ◦ ϕ−1i )

)
(0)

where ϕi is a loal hart andξ1,i = (ϕi ◦ γ1)
′ (0) is some tangent vetor. If we hoose

a di�erent hart ϕj we get that

Dk
xf(ξ1,j , ..., ξk,j) =

(
∂k

∂ξ1,j ...∂ξk,j
(f ◦ ϕ−1j )

)
(0) =

(
∂k

∂ξ1,j ...∂ξk,j
(f ◦ ϕ−1i ◦ ϕ)

)
(0)

where ϕ := ϕi ◦ ϕ
−1
j . By the disussion above, we get that

(
∂k

∂ξ1,j ...∂ξk,j
(f ◦ ϕ−1j )

)
(0) =

(
∂k

∂(Dϕ)ξ1,j ...∂(Dϕ)ξk,j
(f ◦ ϕ−1i )

)
(0)

But

Dxϕ(ξ1,j) = Dxϕ · (ϕi ◦ γ1)
′
(0) = (ϕ ◦ ϕi ◦ γ1)

′(0) = ξ1,i

So Dk
xf(ξ1,j , ..., ξk,j) = Dk

xf(ξ1,i, ..., ξk,i) and the de�nition is well de�ned. We an

now proof the theorem:

Proof. (of Theorem) Note that we an identify Dk
xf ∈ Symk(T ∗xM) ⊗ Ex. Let

N ⊆M be a submanifold. De�ne:

F iN (C∞c (M,E)) = {f ∈ C∞c (M,E)|∀x ∈ N, f vanishes with i− 1 derivatives}

Reall that for loally,M |U ≃ Rn andN |U∩N ≃ Rk, and we showed that F i−1W (V )/F iW (V ) ∼=

C∞c (W,Symi(W⊥)) using the map f 7−→ Dk
xf . Hene by applying a small gener-

alization we get:

F iN/F
i−1
N ≃ C∞c (N,E|N ⊗C Sym

i(CNM
N )).

This gives a anonial �ltration Fi ⊆ DistN(M,E) suh that

Fi/Fi−1 ≃
(
F iN/F

i−1
N

)∗
≃ C∞c (N,E|N⊗CSym

i(CNM
N ))∗ = Dist(N,E|N⊗CSym

i(CNM
N )).

�
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Corollary. We have that Gri(C
−∞(M,E)N ) = C−∞(N,E|N⊗D

∗
M |N⊗Sym

i(NM
N ))⊗

DL).

Proof. We have that:

Gri(C
−∞(M,E)N ) = Gri(DistN (M,E∗ ⊗DM ))

≃ Dist(N,E∗|N⊗DM |N⊗Sym
i(CNM

N )) = C−∞(N,E|N⊗D
∗
M |N⊗Sym

i(NM
N ))⊗DL).

�

8.1. Operations on generalized funtions. At this subsetion we assume X,Y

are either l-spaes, analyti F -manifolds (with or without omplex bundles over

them), or smooth manifolds.

De�nition. Let ϕ : X −→ Y be a map. We an de�ne Pullback of the spae of

funtions by ϕ∗ : C∞(Y ) −→ C∞(X) by ϕ∗(f) = f ◦ϕ. It is easy to see that if ϕ is

proper then ϕ∗ : C∞c (Y ) −→ C∞c (X). This give rise to a de�nition of Pushforward

of distributions ϕ∗ : Dist(X) −→ Dist(Y ) by ϕ∗(ξ)(f) := ξ(ϕ∗(f)) = ξ(f ◦ ϕ).

Note that if ϕ is not proper then we have ϕ∗ : Dist(X)prop −→ Dist(Y ) where

Dist(X)prop := {ξ ∈ Dist(X)|ϕ|supp(ξ) is proper}. We would like to de�ne it by

ϕ∗ξ(f) = ξ(f ◦ ϕ). But f ◦ ϕ is not ompatly supported. Therefore we hoose

a uto� funtion ρ suh that ρ|supp(ξ) = 1 and ρ|UC = 0 where U is a small

neighborhood of supp(ξ) suh that ϕ|U is proper (This is a hard task to �nd suh

a funtion). Hene we an de�ne ϕ∗ξ(f) := ξ(ρ · (f ◦ ϕ)). Note that supp(ρ · (f ◦

ϕ)) ⊆ supp(ρ) ∩ ϕ−1(supp(f)) ⊆ ϕ|−1supp(ρ)(suppf). Sine ϕ|suppρ is proper, and f

is ompatly supported, this is well de�ned. The de�nition learly doesn't depend

on the hoie of ρ.

Reall that for vetor spaes we had Dens(V ) ≃ haarV . Hene we identify/de�ne

the spae of smooth measures µ∞c (X) as a the spae of smooth setions of the

density bundle C∞c (X,DX). Note that we an de�ne ϕ∗ : C
∞
c (X,DX) −→ Dist(X)

by ϕ∗(µ)(f) =
´

X fdµ.

Exerise. ϕ∗(Distcomp(X)) ⊆ Distcomp(Y ).

Proposition. If ϕ : X −→ Y is a submersion, then:

1) ϕ∗(µ
∞
c (X)) ⊆ µ∞c (Y ).

2) In addition, if φ = f · |ωX | and ϕ∗(f · |ωX |) = g · |ωY |, where |ωX | , |ωY | are non-

vanishing densities on X,Y then g(y) =
´

ϕ−1(y) f
|ωX |
|ϕ∗ωY |

where

|ωX |
|ϕ∗ωY |

∈ Dϕ−1(y)
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satisfy that |ωX | ≃
|ωX |
|ϕ∗ωY |

⊗ |ωY | aording to the natural isomorphism (DX)x ≃

(Dϕ−1(y))x ⊗ (DY )ϕ(x).

Proof. 1) Case 1: X = Fn, Y = Fm and ϕ : Fn −→ Fm is the natural projetion

ϕ(x1, ..., xn) = x1, ..., xm. Reall that haarX ≃ haarY ⊗ haarX/Y or equivalently

DX |(x1,...,xn) ≃ DY |(x1,...,xm) ⊗DX/Y |(x1,...,xn), where (x1, ..., xn) = x ∈ X/Y . Let

φ ∈ C∞c (X,DX) and note that φ = f · dµX where f ∈ C∞c (X) and µX is the

anonial Haar measure (taking the value 1 on the unit ball), so we an write

µX = µY ⊗ µX/Y . By de�nition, for any g ∈ C∞c (Y ) we have:

〈ϕ∗(φ), g〉 = 〈φ, g ◦ ϕ〉 =

ˆ

X

f · (g ◦ ϕ)dµX =

ˆ

Y

ˆ

X/Y

f · (g ◦ ϕ)dµY ⊗ µX/Y .

Sine g ◦ ϕ(x1, ..., xn) = g(x1, ..., xm) depends only on Y so we have

〈ϕ∗(φ), g〉 =

ˆ

Y

(
ˆ

X/Y

f · dµX/Y

)
· gdµY =

ˆ

Y

f̃ · gdµY

where f̃ ∈ C∞c (Y ). Hene ϕ∗(φ) is a smooth funtion.

General ase: ϕ : X −→ Y is a submersion. Write Y = ∪Vj and then X =

∪Ui suh that ϕ(Uij ) ⊆ Vj . For any i, j suh that ϕ(Ui) ⊆ Vj we an hoose

isomorphisms τi : Ui ≃ Fn and ψj : Vj ≃ Fm suh that ψj ◦ ϕ ◦ τ
−1
i is the

natural projetion Fn −→ Fm. Hene

(
ψj ◦ ϕ ◦ τ

−1
i

)
∗
(µ∞c (Fn) ⊆ (µ∞c (Fm) and

ϕ∗(C
∞
c (Ui, DUi

) ⊆ C∞c (Vj , DVj
). By partition of unity, we an write φ =

∑
fidµi

where fidµi ∈ C∞c (Ui, DUi
) (this is a �nite sum as φ is ompatly supported).

Finally, observe that:

ϕ∗(φ) = ϕ∗(
∑

fidµi) =
∑

ϕ∗(fidµi) =
∑

gidµi.

Eah gidµi is a smooth distribution, so also the sum

∑
gidµi.

2) Sine ϕis a submersion then for any ϕ(x) = y ∈ Y ϕ−1(y) is a submanifold of X

and we have the following exat sequene:

0 −→ Txϕ
−1(y) −→ Tx(X) −→ Tϕ(x)(Y ) −→ 0.

Therefore Tx(X) = Txϕ
−1(y)⊕ Tϕ(x)(Y ) and hene also

0 −→ T ∗ϕ(x)(Y ) −→ T ∗x (X) −→ T ∗xϕ
−1(y) −→ 0.

This give rise to the following equality: (DX)x = (Dϕ−1(y))x ⊗ (DY )ϕ(x) by (ψ ⊗

τ) 7−→ φ. Preisely, we hoose basis v1, ..., vm of Txϕ
−1(y) and a omplement

basis vm+1, ..., vn suh that dϕ(vm+1, ..., vn) is a basis of Tϕ(x)(Y ) . We now de�ne
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φ(v1 ∧ .... ∧ vn) := ψ((v1 ∧ .... ∧ vm) · τ(dϕ(vm+1 ∧ ....∧ vn). It an be heked that

the isomorphism doesn't depend on the hoie of the basis.

We �rst redue the problem to a small neighborhood, write Y = ∪Vj and then

X = ∪Ui suh that ϕ(Uij ) ⊆ Vj . For any i, j suh that ϕ(Ui) ⊆ Vj we an hoose

isomorphisms τi : Ui ≃ Fn and ψj : Vj ≃ Fm suh that ψj ◦ ϕ ◦ τ
−1
i is the natural

projetion.

We need to prove that ϕ∗(f |ωX |)(h) = f |ωX | (h ◦ ϕ) = g · |ωY | (h) where g as in

the above formula. Construt partition of unity f =
∑
fi. Then it is enough to

prove the laim for fi |ωX | as then:

ϕ∗(f |ωX |)(h) = ϕ∗(
∑

fi |ωX |)(h) =
∑ ˆ

Y

gih |ωY |

where gi(y) =
´

ϕ−1(y)∩Ui
fi · η =

´

ϕ−1(y) fi · η. As g =
∑
gi we have that g(y) =

´

ϕ−1(y)
f · η as required.

The ase of projetion ϕ : Fn −→ Fm was solved at a). Hene it is enough to

redue to this ase. Using the fat that for di�eomorphism, pushforward is inverse

to pullbak, we get:

ψj◦ϕ∗(fi |ωX |) = ψj◦ϕ◦τ
−1
i∗ ((τ−1i )∗ (fi |ωX |)) = ψj◦ϕ◦τ

−1
i∗ (fi◦τ

−1
i ·
∣∣(τ−1i )∗ωX

∣∣) = g̃i
∣∣(ψ−1j )∗ωY

∣∣

where g̃i(x) =
´

τi◦ϕ−1◦ψ−1

j
(x)
fi ◦ τ

−1
i

∣∣∣ (τ−1

i
)∗ωX

(ϕ◦τ−1

i
)∗ωY

∣∣∣. Denote gi := g̃i ◦ ψj . So g̃i =

gi ◦ ψ
−1
j . Hene ϕ∗(fi |ωX |) = gi |ωY |. Also

gi(y) = g̃i(ψj(y)) =

ˆ

τ−1

i
◦ϕ−1(y)

fi ◦ τ
−1
i

∣∣∣∣
(τ−1i )∗ωX

(ϕ ◦ τ−1i )∗ωY

∣∣∣∣ =
ˆ

ϕ−1(y)

fi

∣∣∣∣
ωX
ϕ∗ωY

∣∣∣∣ .

�

De�nition. By the proposition, the map ϕ∗ : C
∞
c (X,DX) −→ C∞c (Y,DY ) gives

a pullbak ϕ∗ : C−∞(Y ) −→ C−∞(X).

Exerise. Let ϕ : X −→ Y be a submersion. We de�ned a pullbak ϕ∗ :

C∞(Y ) −→ C∞(X) both by ϕ∗(f) = f ◦ ϕ and by �rst de�ning ϕ∗ : C−∞(Y ) −→

C−∞(X) via the de�nition for ompatly supported smooth measures, and then by

restriting to C∞(Y ). Show that the two de�nitions oinide.

We an also generalize the push and pull of funtions and distribution to bundles:

De�nition. 1) Let ϕ : X −→ Y and π : E −→ Y a bundle. De�ne ϕ∗(E) :=

{(x, e) ∈ X×E|ϕ(x) = π(e)} as a bundle over X with the natural projetion to X .

2) We an now de�ne pullbak of setions ϕ∗ : C∞(Y,E) −→ C∞(X,ϕ∗(E)) and

pushforward of distributions ϕ∗ : Dist(X,ϕ
∗(E))prop −→ Dist(Y,E).
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3) Let ϕ : X −→ Y . De�ne ϕ!(E) := ϕ∗(E)⊗ ϕ∗(D∗Y )⊗DX .

Proposition. Let ϕ : X −→ Y be a submersion. Then ϕ∗ (C
∞
c (X,ϕ∗(E)⊗DX)) ⊆

C∞(Y,E ⊗DY ). In partiular, This implies that ϕ∗
(
C∞c (X,ϕ!(E))

)
⊆ C∞(Y,E).

Proof. As in the proof of the last proposition, we may redue to the ase where

ϕ : X −→ Y is the natural projetion, X = Fn, Y = Fm, E ≃ Fm × F k is trivial

and as a onsequene ϕ∗(E) = Fn×F k. We may do the redution sine the notion

of �smoothness� of a distribution is loal. Let φ = fdµ ∈ C∞c (X,ϕ∗(E) ⊗ DX).

Then we have for any g ∈ C∞(Y,E),

〈ϕ∗(φ), g〉 = 〈φ, g◦ϕ〉 =

ˆ

X

f ·(g◦ϕ)dµX =

ˆ

Y

(
ˆ

X/Y

f · dµX/Y

)
·gdµY =

ˆ

Y

f̃ ·gdµY = 〈f̃dµY , g〉

so ϕ∗(φ) is smooth. �

9. Fourier transform

De�nition. Let G be a loally ompat Hausdor� abelian group. De�ne its Pon-

tryagin dual by,

G∨ = {χ : G→ U1(C) = S1 ⊆ C|χ(g1g2) = χ(g1)χ(g2), χ is ts}

The topology on G∨ is the ompat open topology, i.e. a sub-basis for the topology

is omprised of sets M(K,V ) = {χ ∈ G∨ : χ(K) ⊆ V } where K ⊆ G is ompat

and V ⊆ S1
is open.

Theorem. 1) Let G be a loally ompat, Hausdor� abelian group, then G∨ is a

loally ompat Hausdor� abelian group.

2) Let G be a loally ompat, Hausdor� abelian group. Show that if G is ompat

then G∨ is disrete, and that if G is disrete then G∨ is ompat.

Proof. At the tutorial session. �

Theorem. For a loally ompat abelian group G, we have that that the natural

map ϕ : G −→ G∨∨ de�ned by g 7−→ ϕg, where ϕg(χ) = χ(g), is an isomorphism

G∨∨ ≃ G.

Proposition. Let G be a loally ompat, Hausdor� abelian group, and H ≤ G a

losed subgroup. Then:

1) Pontryagin duality is a ontravariant endofuntor in the ategory of loally om-

pat abelian groups.
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2) Show that H∨ ≃ G∨/H⊥ where H⊥ = {χ ∈ G∨ : χ(h) = 1 ∀h ∈ H}, and that if

H and G are vetor spaes then this is a homeomorphism.

Proof. At the tutorial session. �

Example. 1) For any �nite abelian group G we have that G ≃ Ĝ.

2) The dual of U1(C) = S1
is Z.

3) For G = R̂ ≃ R.

Exerise. Let V be a topologial vetor spae over a loal �eld F . Then V ∗ ⊗F

F∨ ≃ V ∨.

De�nition. Let G be a loally ompat Hausdor� abelian group. The map F :

µc(G) −→ C(G∨) de�ned by F(µ)(χ) =
´

χdµ is alled Fourier transform.

Exerise. 1) F(µ) is ontinuous.

2) Let G be a loally ompat abelian group. Show that for η ∈ µ∞c (G) and g ∈ G:

(a) F(shg(η))(χ) = χ(g)F(η)(χ) for all χ ∈ G∨.

(b) F(χη) = shχ−1(F(η)) for all χ ∈ G∨.

De�nition. Let X1, X2 be loally ompat T.V.S and let µ1 ∈ µ∞c (X1),µ2 ∈

µ∞c (X2). We an de�ne the tensor produt of suh measures µ1 ⊠ µ2 ∈ µ
∞
c (X1 ×

X2).In addition, If X1 = X2 = G, then we an also de�ne onvolution of measures

by µ1 ∗ µ2 := m∗(µ1 ⊠ µ2) where m : G×G −→ G.

Fat. F(α ∗ β) = F(α) · F(β).

De�nition. Let V be a f.d vetor spae over a loal �eld F . De�ne Schwartz functions

on V by:

1)S(V ) = C∞c (V ), i.e. loally onstant funtions on V , in ase F is non-arhimedean.

2) S(V ) = {f ∈ C∞(V )|∀i ∈ Nn, p ∈ F [V ], sup
∣∣∂if · p(x)

∣∣ <∞}, if F is arhimedean.

In other words it is the spae of rapidly dereasing smooth funtions on V .

Exerise. 1) Let F be a loal �eld, show that F(S(V ;Haar(V )) ⊆ S(V ∨). In

partiular, for the subspae µ∞c (V ) ⊂ S(V ;Haar(V ) we have that F(µ∞c (V )) ⊂

S(V ∨).

2) Give µ∞c (V ) the subspae topology of S(V ;Haar(V ) and S(V ∨) the natural

Fréhet topology. Show that F : µ∞c (V ) −→ S(V ∨) is ontinuous with respet to

these topologies.
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3) Show that µ∞c (V ) is dense in S(V ;Haar(V ) and that S(V ;Haar(V ) is omplete

and dedue that F : S(V ;Haar(V )) −→ S(V ∨) is ontinuous.

De�nition. 1) Let S(V ) be the spae of Shwartz funtions on V . Then ξ ∈ S∗(V )

is alled thetempered distribution and ξ ∈ G(V ) := S∗(V,Haar(V )) is alled a

tempered generalized funtion.

2) Finally, we now an de�ne the Fourier transform on tempered distributions via

duality:

F̃ : S∗(V ∨)→ G(V ) := S∗(V,Haar(V )).

Choosing V := V ∨ we get F̃ : S∗(V )→ G(V ∨).

Theorem. The de�nition of Fourier transform of distributions is onsistent with

the de�nition for funtions. In other words F̃ |S(V ;Haar(V ) = F .

Proof. Let f(x) · dx ∈ S(V ;Haar(V )) and g(χ) · dχ ∈ S(V ∨;Haar(V ∨). Then by

de�nition,

〈F̃(f(x) · dx), g(χ) · dχ〉 := 〈f(x) · dx,F(g(χ)dχ)〉 =

ˆ

V

f(x)F(g(χ) · dχ)(x)dx

where F(g(χ) · dχ)(x) :=
´

V̂
χ(x)g(χ)dχ. Therefore we have:

ˆ

V

f(x)F(g(χ)·dχ)(x)dx =

ˆ

V

f(x)

ˆ

V̂

χ(x)g(χ)dχdx =

ˆ

V̂

(
ˆ

V

χ(x)f(x)dx

)
g(χ)dχ

=

ˆ

V̂

(F(f)(χ)) g(χ)dχ = 〈F(f(x) · dx), g(χ) · dχ〉.

�

In the following argument we would like to present the Fourier transform as a

unitary operator. For this we will �rst need to de�ne a pairing between Haar(V )

and Haar(V ∨). Given α ∈ Haar(V ) and β ∈ Haar(V ∨) we an de�ne suh a

paring as follows. We hoose f ∈ C∞c (V ∨) suh that f(0) = 1 and then de�ne

〈α, β〉 := 〈F(α), f · β〉.

Exerise. 1) This de�nition is well de�ned. That is, given some other g ∈ C∞c (V ∨)

suh that g(0) = 1, show that 〈F(α), (f − g) · β〉 = 0.

2) Show that hV ∨ ≃can h
∗
V .

De�nition. We an now de�ne a map Fn : S∗(V, h⊗nV ) −→ S∗(V ∨, h
⊗(1−n)
V ∨ ) by

using the pairing hV ∨ ≃can h
∗
V and identifying S∗(V, h⊗nV ), S∗(V ∨, h

⊗(1−n)
V ∨ ) with

S∗(V )⊗h⊗−nV and S∗(V ∨, hV ∨)⊗(hV ∨)
⊗n

respetively. The identi�ation between

S∗(V, h⊗nV ) and S∗(V )⊗ h⊗nV ∨ is as follows. Given ξ ⊗ β ∈ S∗(V )⊗ h⊗nV ∨ and f · α ∈
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S(V, h⊗nV ) we set ξ⊗β 7−→ ξβ where ξβ(fα) = ξ(f〈β, α〉). Under this notation, we

have that F0 : S∗(V ) −→ S∗(V ∨, hV ∨) is the Fourier transform.

Proposition. We have that F1 ◦ F0 = flip where flip(ξ)(f(x)µ) = ξ(f(−x)µ).

Proof. Note that span{δx} is a dense subspae of S∗(V ) in the weak topology.

Hene it is enough to show that F1 ◦ F0(δa) = δ−a. Note that F0(δ0)(fβ) :=

〈δ0,F0(fβ)〉 =
´

V ∨ fdβ. Hene F0(δ0) = 1.

Note that F1 : S∗(V ∨, hV ∨) −→ S∗(V ) is de�ned by identifying : S∗(V ∨, hV ∨) with

S∗(V ∨) ⊗ hV . Under this identi�ation, 1 := (1 · µ1) ⊗ µ2where 1 · µ1 ∈ S
∗(V ∨),

µ2 ∈ hV and 〈µ1, µ2〉 = 1. Now given f ∈ S(V ), F1((1 · µ1) ⊗ µ2)(f) = F̃(1 ·

µ1)(fµ2) = f(0) so F1 ◦ F0(δ0) = δ0.

Notie that F0(Sha(δ0)) = χ(a) (as a funtion of χ) and F1(χ(a)). By ontinuity

of F0 and F1 this implies that F1 ◦ F0 = flip.(Need to �nish) �

De�nition. Let V be a vetor spae over F and let χ : F× −→ K× be a group

homomorphism. We an de�ne

χ(V ) := {ϕ : V ∗ −→ K×|ϕ(αf) = χ(α)ϕ(f)}.

Example. If χ = Square : F× −→ F× by χ(a) = a2, then Square(V ) := {ϕ :

V ∗ −→ K|ϕ(αf) = α2ϕ(f)}. Note that Square(V ) ≃can V ⊗ V if V is one

dimensional by v ⊗ w 7−→ ϕv · ϕw. Note that given ψ ∈ V
∗
we have ϕv · ϕw(ψ) =

ψ(v) · ψ(w) and ϕv · ϕw(aψ) = aψ(v) · aψ(w) = a2ϕv · ϕw(ψ).

De�nition. Let V be a one dimensional vetor spae over R.

1) A positive structure on V is a non trivial subset P ⊆ V suh that R≥0 · P = P .

2) If V has a positive struture, we an de�ne

V α := |V |
α
= {ϕ : V ∗ −→ R×|ϕ(βf) = |β|

α
· ϕ(f)}.

Exerise. 1) Let V/R be a 1-dimensional vetor spae with a positive struture.

Show that:

(a) V ≃can |V |.

(b) V α+β ≃can V
α ⊗ V β where α, β ∈ Q×.

2) Dedue that hαV ⊗ h
β
V .
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De�nition. We now an �nally de�ne

Fα : S∗(V, hV ) −→ S∗(V ∨, h1−αV ∨ )

for α ∈ Q. In partiular, hoosing α = 1/2 we have:

F1/2 : S∗(V, h
1/2
V ) −→ S∗(V ∨, h

1/2
V ∨ )


